Team 1: 18, 22, 21, 28, 30, 29, 32, 40, 33, 34, 28, 29, 22, 20
Team 2: 17, 24, 18, 35, 18, 25, 33, 38, 39, 25, 32, 30, 26, 25

6. Which team has a higher IQR? By how many home runs is that team higher?

Find the mean, median, IQR, and standard deviation of the following data sets.

7.
[tex]\[
\begin{tabular}{|c|}
\hline
169 \\
\hline
175 \\
\hline
170 \\
\hline
190 \\
\hline
175 \\
\hline
160 \\
\hline
165 \\
\hline
165 \\
\hline
155 \\
\hline
165 \\
\hline
185 \\
\hline
185 \\
\hline
\end{tabular}
\][/tex]

8.
[tex]\[
\begin{tabular}{|c|c|}
\hline
Student & Score \\
\hline
1 & 86 \\
\hline
2 & 78 \\
\hline
3 & 95 \\
\hline
4 & 83 \\
\hline
5 & 83 \\
\hline
6 & 81 \\
\hline
7 & 87 \\
\hline
8 & 81 \\
\hline
\end{tabular}
\][/tex]

9.
[tex]\[
\begin{tabular}{|c|c|}
\hline
Student & Score \\
\hline
9 & 90 \\
\hline
10 & 85 \\
\hline
11 & 83 \\
\hline
12 & 99 \\
\hline
13 & 81 \\
\hline
14 & 75 \\
\hline
15 & 85 \\
\hline
16 & \\
\hline
\end{tabular}
\][/tex]

10.
[tex]\[
\begin{tabular}{|c|c|}
\hline
Student & Score \\
\hline
17 & 83 \\
\hline
18 & 83 \\
\hline
19 & 70 \\
\hline
20 & 73 \\
\hline
21 & 79 \\
\hline
22 & 85 \\
\hline
23 & 83 \\
\hline
\end{tabular}
\][/tex]

11.
[tex]\[
\begin{tabular}{|c|c|}
\hline
Observation & Value \\
\hline
1 & 17 \\
\hline
2 & 21 \\
\hline
3 & 20 \\
\hline
4 & 19 \\
\hline
5 & 22 \\
\hline
6 & 19 \\
\hline
7 & 20 \\
\hline
8 & 18 \\
\hline
9 & 21 \\
\hline
10 & 19 \\
\hline
11 & 21 \\
\hline
12 & 20 \\
\hline
13 & 19 \\
\hline
14 & 22 \\
\hline
15 & 20 \\
\hline
16 & 23 \\
\hline
17 & 20 \\
\hline
18 & 21 \\
\hline
19 & 18 \\
\hline
20 & 20 \\
\hline
\end{tabular}
\][/tex]



Answer :

### Question 6

Let's determine which team has a higher Interquartile Range (IQR) and by how many home runs that team is higher.

#### Calculating IQR for Team 1:
1. Team 1 data: 18, 22, 21, 28, 30, 29, 32, 40, 33, 34, 28, 29, 22, 20
2. Q1 (First quartile): The value which separates the lowest 25% of the data. For Team 1, this is 22.
3. Q3 (Third quartile): The value which separates the highest 25% of the data. For Team 1, this is 32.
4. IQR (Interquartile Range): [tex]\( Q3 - Q1 \)[/tex]. For Team 1, this is [tex]\( 32 - 22 = 10 \)[/tex].

#### Calculating IQR for Team 2:
1. Team 2 data: 17, 24, 18, 35, 18, 25, 33, 38, 39, 25, 32, 30, 26, 25
2. Q1 (First quartile): For Team 2, this is 24.
3. Q3 (Third quartile): For Team 2, this is 33.
4. IQR (Interquartile Range): [tex]\( Q3 - Q1 \)[/tex]. For Team 2, this is [tex]\( 33 - 24 = 9 \)[/tex].

#### Higher IQR and Difference:
- Team 1 has an IQR of 10, and Team 2 has an IQR of 9.
- Therefore, Team 1 has a higher IQR by [tex]\( 10 - 9 = 1 \)[/tex] home run.

### Question 7

Now, let's find the mean, median, IQR, and standard deviation of the following dataset:
[tex]\[ \{169, 175, 170, 190, 175, 160, 165, 165, 155, 165, 185, 185\} \][/tex]

#### Mean:
The mean is calculated as the sum of all values divided by the number of values.
[tex]\[ \text{Mean} = \frac{169 + 175 + 170 + 190 + 175 + 160 + 165 + 165 + 155 + 165 + 185 + 185}{12} = 171.58 \][/tex]

#### Median:
The median is the middle value when the data set is ordered. For this dataset, the ordered values are:
[tex]\[ \{155, 160, 165, 165, 165, 169, 170, 175, 175, 185, 185, 190\} \][/tex]
With 12 values, the median will be the average of the 6th and 7th values:
[tex]\[ \text{Median} = \frac{169 + 170}{2} = 169.5 \][/tex]

#### IQR (Interquartile Range):
1. First Quartile (Q1): 25th percentile. For this data, [tex]\( Q1 = 163.75 \)[/tex].
2. Third Quartile (Q3): 75th percentile. For this data, [tex]\( Q3 = 176.25 \)[/tex].
3. IQR: [tex]\( Q3 - Q1 = 176.25 - 163.75 = 12.5 \)[/tex]

#### Standard Deviation:
The standard deviation is a measure of the amount of variation or dispersion in a set of values. For this dataset, the standard deviation is [tex]\( 10.29 \)[/tex].

### Summary of Question 7:
- Mean: 171.58
- Median: 169.5
- IQR: 12.5
- Standard Deviation: 10.29