What is the product of the rational expressions below?

[tex]\[
\frac{x-8}{x+11} \cdot \frac{x+8}{x-11}
\][/tex]

A. [tex]\(\frac{x^2-121}{x^2-64}\)[/tex]
B. [tex]\(\frac{x^2-64}{x^2}\)[/tex]
C. [tex]\(\frac{64}{121}\)[/tex]
D. [tex]\(\frac{x^2-64}{x^2-121}\)[/tex]



Answer :

Let's determine the product of the given rational expressions:

[tex]\[ \frac{x-8}{x+11} \cdot \frac{x+8}{x-11} \][/tex]

Step-by-Step Solution:

1. Multiply the Numerators:

We start by multiplying the numerators of the two fractions:
[tex]\[ (x - 8) \cdot (x + 8) \][/tex]

2. Multiply the Denominators:

Next, we multiply the denominators of the two fractions:
[tex]\[ (x + 11) \cdot (x - 11) \][/tex]

3. Form the Product of the Rational Expressions:

Combining the results of steps 1 and 2, the product of the two rational expressions is:
[tex]\[ \frac{(x - 8)(x + 8)}{(x + 11)(x - 11)} \][/tex]

4. Simplify the Expression:

To simplify, we recognize that the numerators and denominators are products of binomials that can be expressed as the difference of squares:
[tex]\[ (x - 8)(x + 8) = x^2 - 64 \][/tex]
[tex]\[ (x + 11)(x - 11) = x^2 - 121 \][/tex]

Therefore, the simplified form of the product is:
[tex]\[ \frac{x^2 - 64}{x^2 - 121} \][/tex]

5. Conclusion:

From the options given:
- A. [tex]\(\frac{x^2-121}{x^2-64}\)[/tex]
- B. [tex]\(\frac{x^2-64}{x^2}\)[/tex]
- C. [tex]\(\frac{64}{121}\)[/tex]
- D. [tex]\(\frac{x^2-64}{x^2-121}\)[/tex]

The correct answer is:
[tex]\[ \boxed{\frac{x^2 - 64}{x^2 - 121}} \][/tex] Which corresponds to option D.