The equation [tex]$y=mx+b$[/tex] is the slope-intercept form of the equation of a line. What is the equation solved for [tex]$b$[/tex]?

A. [tex]y-m=b[/tex]

B. [tex]y-mx=b[/tex]

C. [tex]\frac{y}{mx}=b[/tex]

D. [tex]\frac{y}{m}-x=b[/tex]



Answer :

To solve the equation [tex]\(y = mx + b\)[/tex] for [tex]\(b\)[/tex], we need to isolate [tex]\(b\)[/tex] on one side of the equation. Here are the steps to manipulate the equation:

1. Start with the original equation:
[tex]\[ y = mx + b \][/tex]

2. To isolate [tex]\(b\)[/tex], we need to move [tex]\(mx\)[/tex] to the other side of the equation. To do this, we subtract [tex]\(mx\)[/tex] from both sides:
[tex]\[ y - mx = b \][/tex]

Therefore, the equation solved for [tex]\(b\)[/tex] is:
[tex]\[ b = y - mx \][/tex]

Looking at the given options:
- [tex]\( y - m = b \)[/tex]
- [tex]\( y - mx = b \)[/tex]
- [tex]\(\frac{y}{mx} = b \)[/tex]
- [tex]\(\frac{y}{m} - x = b \)[/tex]

The correct solution is:
[tex]\[ y - mx = b \][/tex]

So the correct answer is [tex]\( y - mx = b \)[/tex].