Given the equation [tex]p = s_1 t - s_2 t[/tex], which equation is solved for [tex]t[/tex]?

A. [tex]t = p \left(s_1 - s_2\right)[/tex]
B. [tex]t = p - s_1 + s_2[/tex]
C. [tex]t = \frac{p}{s_1 - s_2}[/tex]
D. [tex]t = \frac{p}{s_1 + s_2}[/tex]



Answer :

To solve the equation [tex]\( p = s_1 t - s_2 t \)[/tex] for [tex]\( t \)[/tex]:

1. Start with the given equation:
[tex]\[ p = s_1 t - s_2 t \][/tex]

2. Notice that [tex]\( t \)[/tex] is a common factor on the right-hand side of the equation. Therefore, factor [tex]\( t \)[/tex] out of the right-hand side:
[tex]\[ p = t (s_1 - s_2) \][/tex]

3. To isolate [tex]\( t \)[/tex], divide both sides of the equation by [tex]\( (s_1 - s_2) \)[/tex]:
[tex]\[ t = \frac{p}{s_1 - s_2} \][/tex]

Thus, the equation solved for [tex]\( t \)[/tex] is:
[tex]\[ t = \frac{p}{s_1 - s_2} \][/tex]

Therefore, the correct option is:
[tex]\[ t = \frac{p}{s_1 - s_2} \][/tex]