To solve the equation [tex]\( p = s_1 t - s_2 t \)[/tex] for [tex]\( t \)[/tex]:
1. Start with the given equation:
[tex]\[
p = s_1 t - s_2 t
\][/tex]
2. Notice that [tex]\( t \)[/tex] is a common factor on the right-hand side of the equation. Therefore, factor [tex]\( t \)[/tex] out of the right-hand side:
[tex]\[
p = t (s_1 - s_2)
\][/tex]
3. To isolate [tex]\( t \)[/tex], divide both sides of the equation by [tex]\( (s_1 - s_2) \)[/tex]:
[tex]\[
t = \frac{p}{s_1 - s_2}
\][/tex]
Thus, the equation solved for [tex]\( t \)[/tex] is:
[tex]\[
t = \frac{p}{s_1 - s_2}
\][/tex]
Therefore, the correct option is:
[tex]\[ t = \frac{p}{s_1 - s_2} \][/tex]