\begin{tabular}{|l|r|r|r|r|r|r|}
\hline
[tex]$x$[/tex] & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
[tex]$y$[/tex] & 623 & 754 & 912 & 1104 & 1335 & 1616 \\
\hline
\end{tabular}

Use exponential regression to find an exponential function that best fits this data. Round all values to the hundredths. [tex]$f(x)=$[/tex] [tex]$\square$[/tex]

Use linear regression to find a linear function that best fits this data. Round all values to the hundredths. [tex]$g(x)=$[/tex] [tex]$\square$[/tex]



Answer :

Let's start by understanding the problem. We have a set of data points given in a tabular form, and we need to find two different functions that best fit this data:

1. An exponential function [tex]\( f(x) \)[/tex] of the form [tex]\( f(x) = a \cdot e^{b \cdot x} \)[/tex]
2. A linear function [tex]\( g(x) \)[/tex] of the form [tex]\( g(x) = ax + b \)[/tex]

### Step 1: Exponential Regression

For the exponential regression, we are trying to fit the data to the equation [tex]\( f(x) = a \cdot e^{b \cdot x} \)[/tex]. After performing the regression:

- We find parameters [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\( a \approx 514.92 \)[/tex]
[tex]\( b \approx 0.19 \)[/tex]

Therefore, the exponential function that best fits the data is:
[tex]\[ f(x) = 514.92 \cdot e^{0.19 \cdot x} \][/tex]

### Step 2: Linear Regression

For the linear regression, we are trying to fit the data to the equation [tex]\( g(x) = ax + b \)[/tex]. After performing the regression:

- We find parameters [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\( a \approx 197.14 \)[/tex]
[tex]\( b \approx 367.33 \)[/tex]

Therefore, the linear function that best fits the data is:
[tex]\[ g(x) = 197.14x + 367.33 \][/tex]

### Conclusion

The functions that best fit the data, rounded to the hundredths, are:

[tex]\[ f(x) = 514.92 \cdot e^{0.19x} \][/tex]
[tex]\[ g(x) = 197.14x + 367.33 \][/tex]