Select the correct answer.

Which expression is equivalent to [tex]$5 \sqrt[3]{6c} + 7 \sqrt[3]{6c}$[/tex], if [tex]$c \neq 0$[/tex]?

A. [tex]$35 \sqrt[3]{6c}$[/tex]
B. [tex][tex]$12 \sqrt[3]{12c}$[/tex][/tex]
C. [tex]$12 \sqrt[3]{6c}$[/tex]
D. [tex]$72c$[/tex]



Answer :

To simplify the expression [tex]\( 5 \sqrt[3]{6c} + 7 \sqrt[3]{6c} \)[/tex], we need to combine the like terms.

Both terms contain the same cube root, [tex]\( \sqrt[3]{6c} \)[/tex]. Therefore, we can factor out [tex]\( \sqrt[3]{6c} \)[/tex] from each term:

[tex]\[ 5 \sqrt[3]{6c} + 7 \sqrt[3]{6c} = (5 + 7) \cdot \sqrt[3]{6c} \][/tex]

Next, we add the coefficients:

[tex]\[ 5 + 7 = 12 \][/tex]

Thus, the simplified expression becomes:

[tex]\[ 12 \sqrt[3]{6c} \][/tex]

So, the correct answer is:

C. [tex]\( 12 \sqrt[3]{6c} \)[/tex]