Select all the correct answers.

Which equations are in lowest terms?

A. [tex]y=\frac{2 x^2+x-1}{x^2-1}[/tex]
B. [tex]y=\frac{x^2+11 x+18}{x^2-11 x+18}[/tex]
C. [tex]y=\frac{2 x^2+6 x-8}{2 x^2+4 x-6}[/tex]
D. [tex]y=\frac{x^2+x-56}{x^2-12 x+35}[/tex]
E. [tex]y=\frac{2 x^2-5 x+3}{x^2+4 x+3}[/tex]



Answer :

To determine which of the given rational functions are in their lowest terms, we need to factor both the numerator and the denominator and simplify each expression, if possible.

### Equation 1: [tex]\( y = \frac{2x^2 + x - 1}{x^2 - 1} \)[/tex]

Numerator: [tex]\( 2x^2 + x - 1 \)[/tex]
- Factors of [tex]\(2x^2 + x - 1\)[/tex]: [tex]\((2x - 1)(x + 1)\)[/tex]

Denominator: [tex]\( x^2 - 1 \)[/tex]
- Factors of [tex]\(x^2 - 1\)[/tex]: [tex]\((x - 1)(x + 1)\)[/tex]

Thus, the expression simplifies to:
[tex]\[ y = \frac{(2x - 1)(x + 1)}{(x - 1)(x + 1)} \][/tex]

The [tex]\( (x + 1) \)[/tex] terms cancel out, leaving:
[tex]\[ y = \frac{2x - 1}{x - 1} \][/tex]

This is now in its simplest form.

### Equation 2: [tex]\( y = \frac{x^2 + 11x + 18}{x^2 - 11x + 18} \)[/tex]

Numerator: [tex]\( x^2 + 11x + 18 \)[/tex]
- Factors of [tex]\(x^2 + 11x + 18\)[/tex]: [tex]\((x + 9)(x + 2)\)[/tex]

Denominator: [tex]\( x^2 - 11x + 18 \)[/tex]
- Factors of [tex]\(x^2 - 11x + 18\)[/tex]: [tex]\((x - 2)(x - 9)\)[/tex]

There are no common factors to simplify, so the expression remains as it is.

### Equation 3: [tex]\( y = \frac{2x^2 + 6x - 8}{2x^2 + 4x - 6} \)[/tex]

Numerator: [tex]\( 2x^2 + 6x - 8 \)[/tex]
- Factors of [tex]\(2x^2 + 6x - 8\)[/tex]: [tex]\((2x - 2)(x + 4)\)[/tex] (factors to [tex]\(2(x + 4)(x - 1)\)[/tex])

Denominator: [tex]\( 2x^2 + 4x - 6 \)[/tex]
- Factors of [tex]\(2x^2 + 4x - 6\)[/tex]: [tex]\((2x - 2)(x + 3)\)[/tex] (factors to [tex]\(2(x + 3)(x - 1)\)[/tex])

Thus, the expression simplifies to:
[tex]\[ y = \frac{2(x + 4)(x - 1)}{2(x + 3)(x - 1)} \][/tex]

The [tex]\(2\)[/tex] and [tex]\( (x - 1) \)[/tex] terms cancel out, leaving:
[tex]\[ y = \frac{x + 4}{x + 3} \][/tex]

This is now in its simplest form.

### Equation 4: [tex]\( y = \frac{x^2 + x - 56}{x^2 - 12x + 35} \)[/tex]

Numerator: [tex]\( x^2 + x - 56 \)[/tex]
- Factors of [tex]\(x^2 + x - 56\)[/tex]: [tex]\((x + 8)(x - 7)\)[/tex]

Denominator: [tex]\( x^2 - 12x + 35 \)[/tex]
- Factors of [tex]\(x^2 - 12x + 35\)[/tex]: [tex]\((x - 5)(x - 7)\)[/tex]

Thus, the expression simplifies to:
[tex]\[ y = \frac{(x + 8)(x - 7)}{(x - 5)(x - 7)} \][/tex]

The [tex]\( (x - 7) \)[/tex] terms cancel out, leaving:
[tex]\[ y = \frac{x + 8}{x - 5} \][/tex]

This is now in its simplest form.

### Equation 5: [tex]\( y = \frac{2x^2 - 5x + 3}{x^2 + 4x + 3} \)[/tex]

Numerator: [tex]\( 2x^2 - 5x + 3 \)[/tex]
- Factors of [tex]\(2x^2 - 5x + 3\)[/tex]: [tex]\((2x - 3)(x - 1)\)[/tex]

Denominator: [tex]\( x^2 + 4x + 3 \)[/tex]
- Factors of [tex]\(x^2 + 4x + 3\)[/tex]: [tex]\((x + 3)(x + 1)\)[/tex]

There are no common factors to simplify, so the expression remains as it is.

### Summary

The equations in their lowest terms are:

1. [tex]\( y = \frac{2x^2 + x - 1}{x^2 - 1} \)[/tex]
2. [tex]\( y = \frac{2x^2 + 6x - 8}{2x^2 + 4x - 6} \)[/tex]
4. [tex]\( y = \frac{x^2 + x - 56}{x^2 - 12x + 35} \)[/tex]

Therefore, the correct answers are: [tex]\( \boxed{1, 3, 4} \)[/tex].