Solve the inequality.

[tex]\[
\left| 18 + \frac{x}{2} \right| \geq 10
\][/tex]

[tex]\[
x \leq [?] \text{ or } x \geq \square
\][/tex]

Enter:



Answer :

To solve the inequality
[tex]\[ \left|18 + \frac{x}{2}\right| \geq 10, \][/tex]
we'll proceed step by step.

1. Understand the Absolute Value Inequality:
[tex]\[ \left| A \right| \geq B \implies A \leq -B \text{ or } A \geq B. \][/tex]
Here, [tex]\( A = 18 + \frac{x}{2} \)[/tex] and [tex]\( B = 10 \)[/tex]. Thus, we can rewrite the inequality as:
[tex]\[ 18 + \frac{x}{2} \leq -10 \quad \text{or} \quad 18 + \frac{x}{2} \geq 10. \][/tex]

2. Solve Each Case Separately:

- Case 1: [tex]\( 18 + \frac{x}{2} \leq -10 \)[/tex]
[tex]\[ 18 + \frac{x}{2} \leq -10 \][/tex]
Subtract 18 from both sides:
[tex]\[ \frac{x}{2} \leq -10 - 18 \][/tex]
[tex]\[ \frac{x}{2} \leq -28 \][/tex]
Multiply both sides by 2:
[tex]\[ x \leq -56 \][/tex]

- Case 2: [tex]\( 18 + \frac{x}{2} \geq 10 \)[/tex]
[tex]\[ 18 + \frac{x}{2} \geq 10 \][/tex]
Subtract 18 from both sides:
[tex]\[ \frac{x}{2} \geq 10 - 18 \][/tex]
[tex]\[ \frac{x}{2} \geq -8 \][/tex]
Multiply both sides by 2:
[tex]\[ x \geq -16 \][/tex]

3. Combine the Results:
[tex]\[ x \leq -56 \quad \text{or} \quad x \geq -16. \][/tex]

So, the solution to the inequality [tex]\(\left|18 + \frac{x}{2}\right| \geq 10\)[/tex] is:

[tex]\(\boxed{x \leq -56 \quad \text{or} \quad x \geq -16}\)[/tex].