You wish to test the following claim at a significance level of [tex]\alpha = 0.005[/tex].

[tex]\[
\begin{array}{l}
H_o: p = 0.87 \\
H_a: p \ \textless \ 0.87
\end{array}
\][/tex]

You obtain a sample of size [tex]n = 289[/tex] in which there are 246 successful observations.

a. What is the test statistic for this sample?

Test statistic [tex]= \square[/tex] (Round to 3 decimal places.)

b. What is the p-value for this sample?

P-value [tex]= \square[/tex] (Use Technology and round to 4 decimal places.)



Answer :

Let's walk through the steps to solve the given problem:

### Step 1: State the Hypotheses
Null Hypothesis ([tex]$H_0$[/tex]): The population proportion [tex]\( p = 0.87 \)[/tex]

Alternative Hypothesis ([tex]$H_a$[/tex]): The population proportion [tex]\( p < 0.87 \)[/tex]

### Step 2: Determine the Significance Level
The significance level ([tex]\(\alpha\)[/tex]) is given as 0.005.

### Step 3: Sample Data
- Sample size ([tex]\(n\)[/tex]) = 289
- Number of successes ([tex]\(x\)[/tex]) = 246

### Step 4: Calculate the Sample Proportion
The sample proportion ([tex]\(\hat{p}\)[/tex]) is calculated as follows:
[tex]\[ \hat{p} = \frac{x}{n} = \frac{246}{289} \approx 0.8512 \][/tex]

### Step 5: Calculate the Test Statistic (z-score)
The test statistic can be calculated using the formula for the z-score of a sample proportion:
[tex]\[ z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}} \][/tex]
Where [tex]\( p_0 \)[/tex] is the population proportion under the null hypothesis.

Substitute the values:
[tex]\[ z = \frac{0.8512 - 0.87}{\sqrt{\frac{0.87 \times (1 - 0.87)}{289}}} \][/tex]

After performing the calculations,

The test statistic [tex]\( z \approx -0.95 \)[/tex] (rounded to 3 decimal places).

### Step 6: Calculate the P-value
The P-value is the probability that the test statistic is less than the observed value of the test statistic under the null hypothesis. Given a z-score of [tex]\(-0.95\)[/tex], you can look up this value in a standard normal distribution table or use technology to find the P-value.

The P-value [tex]\( \approx 0.1711 \)[/tex] (rounded to 4 decimal places).

### Summary
a. Test statistic [tex]\( = -0.950 \)[/tex] (rounded to 3 decimal places)

b. P-value [tex]\( = 0.1711 \)[/tex] (rounded to 4 decimal places)