Let's break down the expression step by step to find the values for each part of the coordinate pair [tex]\(\left(\frac{24+19}{2}, \frac{13+(-8)}{2}\right)\)[/tex].
First, focus on the x-value component of the coordinate pair:
[tex]\[
\frac{24 + 19}{2}
\][/tex]
1. Calculate the sum in the numerator:
[tex]\[
24 + 19 = 43
\][/tex]
2. Now, divide the sum by the denominator:
[tex]\[
\frac{43}{2} = 21.5
\][/tex]
So, the x-value of the coordinate pair is [tex]\(21.5\)[/tex].
Next, consider the y-value component of the coordinate pair:
[tex]\[
\frac{13 + (-8)}{2}
\][/tex]
1. Calculate the sum in the numerator:
[tex]\[
13 + (-8) = 5
\][/tex]
2. Now, divide the sum by the denominator:
[tex]\[
\frac{5}{2} = 2.5
\][/tex]
So, the y-value of the coordinate pair is [tex]\(2.5\)[/tex].
Thus, the coordinate pair simplifies to:
[tex]\[
(21.5, 2.5)
\][/tex]