Answer :

To simplify the given expression [tex]\( \left(\frac{1}{2}\right)^2 - 6\left(2 - \frac{2}{3}\right) \)[/tex], we'll break it down into a step-by-step process:

1. Calculate the first term [tex]\(\left(\frac{1}{2}\right)^2\)[/tex]:

[tex]\[ \left(\frac{1}{2}\right)^2 = \frac{1}{4} = 0.25 \][/tex]

2. Simplify the expression inside the parentheses [tex]\(2 - \frac{2}{3}\)[/tex]:

[tex]\[ 2 - \frac{2}{3} = \frac{6}{3} - \frac{2}{3} = \frac{4}{3} \][/tex]

3. Multiply the simplified expression by [tex]\(-6\)[/tex]:

[tex]\[ -6 \left(\frac{4}{3}\right) = -\frac{24}{3} = -8 \][/tex]

4. Combine the two results (the first term and the second term):

[tex]\[ \left(\frac{1}{2}\right)^2 - 6\left(2 - \frac{2}{3}\right) = 0.25 - 8 \][/tex]

5. Simplify the final expression:

[tex]\[ 0.25 - 8 = -7.75 \][/tex]

Thus, the simplified expression is

[tex]\[ \left(\frac{1}{2}\right)^2 - 6\left(2 - \frac{2}{3}\right) = -7.75 \][/tex]