Simplify.

[tex]\[ \left(\frac{1}{2}\right)^2 - 6\left(2 - \frac{2}{3}\right) \][/tex]

Enter your answer in the box as a fraction in simplest form.

[tex]\[ \square \][/tex]



Answer :

Let's break down and simplify the given expression step by step.

The given expression is:
[tex]\[ \left(\frac{1}{2}\right)^2 - 6 \left(2 - \frac{2}{3}\right) \][/tex]

### Step 1: Simplify [tex]\(\left(\frac{1}{2}\right)^2\)[/tex]

First, calculate [tex]\(\left(\frac{1}{2}\right)^2\)[/tex]:
[tex]\[ \left(\frac{1}{2}\right)^2 = \frac{1}{4} \][/tex]

### Step 2: Simplify [tex]\(2 - \frac{2}{3}\)[/tex]

Next, simplify the expression inside the parentheses:
[tex]\[ 2 - \frac{2}{3} \][/tex]

To subtract these fractions, let's convert 2 to a fraction with a common denominator of 3:
[tex]\[ 2 = \frac{6}{3} \][/tex]

Now subtract:
[tex]\[ \frac{6}{3} - \frac{2}{3} = \frac{4}{3} \][/tex]

### Step 3: Multiply by 6

Next, multiply the result by 6:
[tex]\[ 6 \left(\frac{4}{3}\right) = \frac{24}{3} = 8 \][/tex]

### Step 4: Combine the results

Now combine all the simplified parts:
[tex]\[ \left(\frac{1}{4}\right) - 8 \][/tex]

To combine these terms, express [tex]\(8\)[/tex] as a fraction with a common denominator of 4:
[tex]\[ 8 = \frac{32}{4} \][/tex]

Subtract the fractions:
[tex]\[ \frac{1}{4} - \frac{32}{4} = \frac{1 - 32}{4} = \frac{-31}{4} \][/tex]

Thus, the simplified expression is:
[tex]\[ \boxed{\frac{-31}{4}} \][/tex]