Answer :
Let's break down each expression and identify the necessary components: terms, variables, coefficients, and constants.
### Expression 5: [tex]\(2x + 3 - 6x + 7\)[/tex]
1. Terms: The individual parts of the expression, separated by addition or subtraction, are:
[tex]\[ 2x, \quad 3, \quad -6x, \quad 7 \][/tex]
2. Variables: The symbols that represent an unknown value. In this case, the only variable is:
[tex]\[ x \][/tex]
3. Coefficients: The numerical factors multiplying the variables. Here, we have:
[tex]\[ 2, \quad -6 \][/tex]
4. Constants: The numerical values without a variable. In this expression, they are:
[tex]\[ 3, \quad 7 \][/tex]
So for Expression 5:
- Terms: [tex]\(2x, 3, -6x, 7\)[/tex]
- Variable(s): [tex]\(x\)[/tex]
- Coefficients: [tex]\(2, -6\)[/tex]
- Constants: [tex]\(3, 7\)[/tex]
### Expression 6: [tex]\(-3y + 5z - 7 + 2y + 1\)[/tex]
1. Terms: The individual parts of the expression, separated by addition or subtraction, are:
[tex]\[ -3y, \quad 5z, \quad -7, \quad 2y, \quad 1 \][/tex]
2. Variables: The symbols that represent unknown values. In this case, the variables are:
[tex]\[ y, \quad z \][/tex]
3. Coefficients: The numerical factors multiplying the variables. Here, we have:
[tex]\[ -3, \quad 5, \quad 2 \][/tex]
4. Constants: The numerical values without a variable. In this expression, they are:
[tex]\[ -7, \quad 1 \][/tex]
So for Expression 6:
- Terms: [tex]\(-3y, 5z, -7, 2y, 1\)[/tex]
- Variable(s): [tex]\(y, z\)[/tex]
- Coefficients: [tex]\(-3, 5, 2\)[/tex]
- Constants: [tex]\(-7, 1\)[/tex]
Summarizing the findings:
5. [tex]\(2x + 3 - 6x + 7\)[/tex]
- Terms: [tex]\(2x, 3, -6x, 7\)[/tex]
- Variable(s): [tex]\(x\)[/tex]
- Coefficients: [tex]\(2, -6\)[/tex]
- Constants: [tex]\(3, 7\)[/tex]
6. [tex]\(-3y + 5z - 7 + 2y + 1\)[/tex]
- Terms: [tex]\(-3y, 5z, -7, 2y, 1\)[/tex]
- Variable(s): [tex]\(y, z\)[/tex]
- Coefficients: [tex]\(-3, 5, 2\)[/tex]
- Constants: [tex]\(-7, 1\)[/tex]
### Expression 5: [tex]\(2x + 3 - 6x + 7\)[/tex]
1. Terms: The individual parts of the expression, separated by addition or subtraction, are:
[tex]\[ 2x, \quad 3, \quad -6x, \quad 7 \][/tex]
2. Variables: The symbols that represent an unknown value. In this case, the only variable is:
[tex]\[ x \][/tex]
3. Coefficients: The numerical factors multiplying the variables. Here, we have:
[tex]\[ 2, \quad -6 \][/tex]
4. Constants: The numerical values without a variable. In this expression, they are:
[tex]\[ 3, \quad 7 \][/tex]
So for Expression 5:
- Terms: [tex]\(2x, 3, -6x, 7\)[/tex]
- Variable(s): [tex]\(x\)[/tex]
- Coefficients: [tex]\(2, -6\)[/tex]
- Constants: [tex]\(3, 7\)[/tex]
### Expression 6: [tex]\(-3y + 5z - 7 + 2y + 1\)[/tex]
1. Terms: The individual parts of the expression, separated by addition or subtraction, are:
[tex]\[ -3y, \quad 5z, \quad -7, \quad 2y, \quad 1 \][/tex]
2. Variables: The symbols that represent unknown values. In this case, the variables are:
[tex]\[ y, \quad z \][/tex]
3. Coefficients: The numerical factors multiplying the variables. Here, we have:
[tex]\[ -3, \quad 5, \quad 2 \][/tex]
4. Constants: The numerical values without a variable. In this expression, they are:
[tex]\[ -7, \quad 1 \][/tex]
So for Expression 6:
- Terms: [tex]\(-3y, 5z, -7, 2y, 1\)[/tex]
- Variable(s): [tex]\(y, z\)[/tex]
- Coefficients: [tex]\(-3, 5, 2\)[/tex]
- Constants: [tex]\(-7, 1\)[/tex]
Summarizing the findings:
5. [tex]\(2x + 3 - 6x + 7\)[/tex]
- Terms: [tex]\(2x, 3, -6x, 7\)[/tex]
- Variable(s): [tex]\(x\)[/tex]
- Coefficients: [tex]\(2, -6\)[/tex]
- Constants: [tex]\(3, 7\)[/tex]
6. [tex]\(-3y + 5z - 7 + 2y + 1\)[/tex]
- Terms: [tex]\(-3y, 5z, -7, 2y, 1\)[/tex]
- Variable(s): [tex]\(y, z\)[/tex]
- Coefficients: [tex]\(-3, 5, 2\)[/tex]
- Constants: [tex]\(-7, 1\)[/tex]