To divide [tex]\( 7.956 \times 10^{-6} \)[/tex] by [tex]\( 2.55 \times 10^{-3} \)[/tex], follow these steps:
1. Divide the coefficients:
[tex]$ \frac{7.956}{2.55} $[/tex]
2. Calculate the division of the coefficients:
Using the calculator or long division, it gives:
[tex]$ \frac{7.956}{2.55} \approx 3.12 $[/tex]
3. Divide the exponents:
When you divide numbers in scientific notation, you subtract the exponents:
[tex]$ 10^{-6} \div 10^{-3} = 10^{-6 - (-3)} = 10^{-6 + 3} = 10^{-3} $[/tex]
4. Combine the results:
[tex]$ 3.12 \times 10^{-3} $[/tex]
So, the solution to [tex]\( \frac{7.956 \times 10^{-6}}{2.55 \times 10^{-3}} \)[/tex] is:
[tex]\[
3.12 \times 10^{-3}
\][/tex]
Therefore, the correct choice from the provided options is:
[tex]\[
\boxed{3.12 \cdot 10^{-3}}
\][/tex]