Answered

4. Divide [tex]$7.956 \cdot 10^{-6}$[/tex] by [tex]$2.55 \cdot 10^{-3}$[/tex].

A. [tex]3.12 \cdot 10^{-2}[/tex]
B. [tex]3.12 \cdot 10^{-9}[/tex]
C. [tex]3.12 \cdot 10^2[/tex]
D. [tex]3.12 \cdot 10^{-3}[/tex]



Answer :

To divide [tex]\( 7.956 \times 10^{-6} \)[/tex] by [tex]\( 2.55 \times 10^{-3} \)[/tex], follow these steps:

1. Divide the coefficients:
[tex]$ \frac{7.956}{2.55} $[/tex]

2. Calculate the division of the coefficients:
Using the calculator or long division, it gives:
[tex]$ \frac{7.956}{2.55} \approx 3.12 $[/tex]

3. Divide the exponents:
When you divide numbers in scientific notation, you subtract the exponents:
[tex]$ 10^{-6} \div 10^{-3} = 10^{-6 - (-3)} = 10^{-6 + 3} = 10^{-3} $[/tex]

4. Combine the results:
[tex]$ 3.12 \times 10^{-3} $[/tex]

So, the solution to [tex]\( \frac{7.956 \times 10^{-6}}{2.55 \times 10^{-3}} \)[/tex] is:

[tex]\[ 3.12 \times 10^{-3} \][/tex]

Therefore, the correct choice from the provided options is:

[tex]\[ \boxed{3.12 \cdot 10^{-3}} \][/tex]