[tex]$
\begin{array}{l}
f(x)=x^2+1 \quad g(x)=5-x \\
(f+g)(x)= \\
\end{array}
$[/tex]

A. [tex]$x^2+x-4$[/tex]
B. [tex]$x^2+x+4$[/tex]
C. [tex]$x^2-x+6$[/tex]
D. [tex]$x^2+x+6$[/tex]



Answer :

To find [tex]\((f + g)(x)\)[/tex] given the functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex], we need to add the two functions together.

Given:
[tex]\[ f(x) = x^2 + 1 \][/tex]
[tex]\[ g(x) = 5 - x \][/tex]

The combined function [tex]\( (f + g)(x) \)[/tex] is defined as:
[tex]\[ (f + g)(x) = f(x) + g(x) \][/tex]

Substitute the expressions for [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:
[tex]\[ (f + g)(x) = (x^2 + 1) + (5 - x) \][/tex]

Now, combine the terms:
[tex]\[ (f + g)(x) = x^2 + 1 + 5 - x \][/tex]
[tex]\[ (f + g)(x) = x^2 - x + 6 \][/tex]

Thus, the combined function is:
[tex]\[ (f + g)(x) = x^2 - x + 6 \][/tex]

Therefore, the correct answer is:
[tex]\[ x^2 - x + 6 \][/tex]