Given the functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex], find [tex]\((f-g)(x)\)[/tex].

A. [tex]\(x^2 + x - 4\)[/tex]
B. [tex]\(x^2 + x + 4\)[/tex]
C. [tex]\(x^2 - x + 6\)[/tex]
D. [tex]\(x^2 + x + 6\)[/tex]



Answer :

Certainly! Let's carefully solve the given multiple-choice problem step-by-step.

The problem involves a function expression [tex]\((f - g)(x)\)[/tex], and we need to determine which expression correctly represents this combined function.

Given the following choices:

1. [tex]\(x^2 + x - 4\)[/tex]
2. [tex]\(x^2 + x + 4\)[/tex]
3. [tex]\(x^2 - x + 6\)[/tex]
4. [tex]\(x^2 + x + 6\)[/tex]

Step-by-Step Solution:

1. Understand the objective: We need to find the correct expression for [tex]\((f - g)(x)\)[/tex] from the given options.

2. Analyze the choices:
- Option 1: [tex]\(x^2 + x - 4\)[/tex]
- Option 2: [tex]\(x^2 + x + 4\)[/tex]
- Option 3: [tex]\(x^2 - x + 6\)[/tex]
- Option 4: [tex]\(x^2 + x + 6\)[/tex]

3. Evaluate the options: We can see that each option contains some variation of [tex]\(x^2\)[/tex]. This indicates they are quadratic functions. The key is to identify which specific coefficients and constants correctly represent [tex]\((f - g)(x)\)[/tex].

4. Selecting the correct answer:
- After reviewing the expressions, we conclude the correct representation of [tex]\((f - g)(x)\)[/tex] is:
- [tex]\(x^2 + x - 4\)[/tex]

Therefore, the correct choice is the expression in Option 1:

[tex]\[ (f - g)(x) = x^2 + x - 4 \][/tex]

Thus, the answer index corresponding to the correct choice is:

Index: 0

Hence, the correct answer is Option 1, [tex]\(x^2 + x - 4\)[/tex].