Answer :
Let's determine [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] where [tex]\(f(x) = x^4 - x^3 + x^2\)[/tex] and [tex]\(g(x) = -x^2\)[/tex].
Given [tex]\(f(x) = x^4 - x^3 + x^2\)[/tex] and [tex]\(g(x) = -x^2\)[/tex]:
1. We need to find the quotient [tex]\(\frac{f(x)}{g(x)}\)[/tex]:
[tex]\[ \frac{f(x)}{g(x)} = \frac{x^4 - x^3 + x^2}{-x^2} \][/tex]
2. Split the numerator and divide each term by the denominator:
[tex]\[ \frac{x^4}{-x^2} - \frac{x^3}{-x^2} + \frac{x^2}{-x^2} \][/tex]
3. Simplify each term individually:
[tex]\[ \frac{x^4}{-x^2} = -x^2 \][/tex]
[tex]\[ \frac{x^3}{-x^2} = -x \][/tex]
[tex]\[ \frac{x^2}{-x^2} = -1 \][/tex]
4. Combine the simplified terms:
[tex]\[ -x^2 - x - 1 \][/tex]
Therefore, the function [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] simplifies to:
[tex]\[ -x^2 + x - 1 \][/tex]
Comparing with the given options:
1. [tex]\(x^2 - x + 1\)[/tex]
2. [tex]\(x^2 + x + 1\)[/tex]
3. [tex]\(-x^2 + x - 1\)[/tex]
4. [tex]\(-x^2 - x - 1\)[/tex]
The correct answer is:
[tex]\[ \boxed{-x^2 + x - 1} \][/tex]
Given [tex]\(f(x) = x^4 - x^3 + x^2\)[/tex] and [tex]\(g(x) = -x^2\)[/tex]:
1. We need to find the quotient [tex]\(\frac{f(x)}{g(x)}\)[/tex]:
[tex]\[ \frac{f(x)}{g(x)} = \frac{x^4 - x^3 + x^2}{-x^2} \][/tex]
2. Split the numerator and divide each term by the denominator:
[tex]\[ \frac{x^4}{-x^2} - \frac{x^3}{-x^2} + \frac{x^2}{-x^2} \][/tex]
3. Simplify each term individually:
[tex]\[ \frac{x^4}{-x^2} = -x^2 \][/tex]
[tex]\[ \frac{x^3}{-x^2} = -x \][/tex]
[tex]\[ \frac{x^2}{-x^2} = -1 \][/tex]
4. Combine the simplified terms:
[tex]\[ -x^2 - x - 1 \][/tex]
Therefore, the function [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] simplifies to:
[tex]\[ -x^2 + x - 1 \][/tex]
Comparing with the given options:
1. [tex]\(x^2 - x + 1\)[/tex]
2. [tex]\(x^2 + x + 1\)[/tex]
3. [tex]\(-x^2 + x - 1\)[/tex]
4. [tex]\(-x^2 - x - 1\)[/tex]
The correct answer is:
[tex]\[ \boxed{-x^2 + x - 1} \][/tex]