If [tex]$f(x)=x^4-x^3+x^2$[/tex] and [tex]$g(x)=-x^2$[/tex], where [tex][tex]$x \neq 0$[/tex][/tex], what is [tex]$(\frac{f}{g})(x)$[/tex]?

A. [tex]x^2-x+1[/tex]
B. [tex]x^2+x+1[/tex]
C. [tex]-x^2+x-1[/tex]
D. [tex]-x^2-x-1[/tex]



Answer :

Let's determine [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] where [tex]\(f(x) = x^4 - x^3 + x^2\)[/tex] and [tex]\(g(x) = -x^2\)[/tex].

Given [tex]\(f(x) = x^4 - x^3 + x^2\)[/tex] and [tex]\(g(x) = -x^2\)[/tex]:

1. We need to find the quotient [tex]\(\frac{f(x)}{g(x)}\)[/tex]:
[tex]\[ \frac{f(x)}{g(x)} = \frac{x^4 - x^3 + x^2}{-x^2} \][/tex]

2. Split the numerator and divide each term by the denominator:
[tex]\[ \frac{x^4}{-x^2} - \frac{x^3}{-x^2} + \frac{x^2}{-x^2} \][/tex]

3. Simplify each term individually:
[tex]\[ \frac{x^4}{-x^2} = -x^2 \][/tex]
[tex]\[ \frac{x^3}{-x^2} = -x \][/tex]
[tex]\[ \frac{x^2}{-x^2} = -1 \][/tex]

4. Combine the simplified terms:
[tex]\[ -x^2 - x - 1 \][/tex]

Therefore, the function [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] simplifies to:
[tex]\[ -x^2 + x - 1 \][/tex]

Comparing with the given options:
1. [tex]\(x^2 - x + 1\)[/tex]
2. [tex]\(x^2 + x + 1\)[/tex]
3. [tex]\(-x^2 + x - 1\)[/tex]
4. [tex]\(-x^2 - x - 1\)[/tex]

The correct answer is:
[tex]\[ \boxed{-x^2 + x - 1} \][/tex]