Answered

14. The dimensions of a box are [tex]\( x \)[/tex], [tex]\( 2x \)[/tex], and [tex]\( 3x \)[/tex]. Each dimension is decreased by 2. Calculate the volume of the box.

A. [tex]\( 6z^2 - 22z^2 + 24z - 8 \)[/tex]
B. [tex]\( 40z^3 \)[/tex]
C. [tex]\( 3x^2 - 12 = -8 \)[/tex]
D. [tex]\( -1x^6 \)[/tex]



Answer :

To solve this problem, let's follow these steps:

1. Determine the original dimensions of the box:
- Length: [tex]\(x\)[/tex]
- Width: [tex]\(2x\)[/tex]
- Height: [tex]\(3x\)[/tex]

2. Decrease each dimension by 2:
- New length: [tex]\(x - 2\)[/tex]
- New width: [tex]\(2x - 2\)[/tex]
- New height: [tex]\(3x - 2\)[/tex]

3. Calculate each new dimension:
- If [tex]\(x = 1\)[/tex] (assuming a value for calculation):

- New length: [tex]\(1 - 2 = -1\)[/tex]
- New width: [tex]\(2(1) - 2 = 0\)[/tex]
- New height: [tex]\(3(1) - 2 = 1\)[/tex]

4. Calculate the volume of the new box:
The volume [tex]\(V\)[/tex] is given by the product of the length, width, and height:

[tex]\[ V = (\text{new length}) \times (\text{new width}) \times (\text{new height}) \][/tex]

Substituting the values we have:

[tex]\[ V = (-1) \times 0 \times 1 = 0 \][/tex]

5. Conclusion:
The new dimensions of the box are [tex]\(-1, 0, 1\)[/tex], and the volume of the box with the new dimensions is [tex]\(0\)[/tex].