Here is a table of values for [tex]\( y = f(x) \)[/tex].

[tex]\[
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
$x$ & -5 & -3 & 0 & 2 & 6 & 7 & 9 & 10 & 13 \\
\hline
$f(x)$ & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 & 1 \\
\hline
\end{tabular}
\][/tex]

Mark the statements that are true:

A. [tex]\( f(-3) = 2 \)[/tex]
B. The range for [tex]\( f(x) \)[/tex] is all real numbers.
C. The domain for [tex]\( f(x) \)[/tex] is the set [tex]\(\{-5, -3, 0, 2, 6, 7, 9, 10, 13\}\)[/tex].
D. [tex]\( f(0) = 10 \)[/tex]



Answer :

Let's analyze each statement one by one based on the provided table.

### Statement A: [tex]\( f(-3) = 2 \)[/tex]
From the table, when [tex]\( x = -3 \)[/tex]:
[tex]\[ f(-3) = 2 \][/tex]
This statement is true.

### Statement B: The range for [tex]\( f(x) \)[/tex] is all real numbers.
The range of a function is the set of all possible output values. From the table, the values of [tex]\( f(x) \)[/tex] are:
[tex]\[ 1, 2, 3, 0, 1, 2, 3, 0, 1 \][/tex]
The unique values are:
[tex]\[ \{0, 1, 2, 3\} \][/tex]
Since the range only includes these four specific values, it is not all real numbers. Therefore, this statement is false.

### Statement C: The domain for [tex]\( f(x) \)[/tex] is the set [tex]\( \{-5, -3, 0, 2, 6, 7, 9, 10, 13\} \)[/tex].
The domain of a function is the set of all possible input values. From the table, the [tex]\( x \)[/tex]-values are:
[tex]\[ -5, -3, 0, 2, 6, 7, 9, 10, 13 \][/tex]
These values match exactly the given set. Therefore, this statement is true.

### Statement D: [tex]\( f(0) = 10 \)[/tex]
From the table, when [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 3 \][/tex]
This statement claims that [tex]\( f(0) \)[/tex] is 10, which is not true. Therefore, this statement is false.

### Summary
1. Statement A: True
2. Statement B: False
3. Statement C: True
4. Statement D: False

Thus, the correct results are [tex]\(\boxed{\text{True, False, True, False}}\)[/tex].