For what interval is the value of [tex]\((f-g)(x)\)[/tex] negative?

A. [tex]\((-∞, -1)\)[/tex]
B. [tex]\((-∞, 2)\)[/tex]
C. [tex]\((0, 3)\)[/tex]
D. [tex]\((2, ∞)\)[/tex]



Answer :

To determine for what interval the value of [tex]\((f - g)(x)\)[/tex] is negative, let's analyze the problem step-by-step:

1. Identify the expressions:
[tex]\[ h(x) = (f - g)(x) = f(x) - g(x) \][/tex]

2. Determine the intervals given in the question:
- [tex]\( (-\infty, -1) \)[/tex]
- [tex]\( (-\infty, 2) \)[/tex]
- [tex]\( (0, 3) \)[/tex]
- [tex]\( (2, \infty) \)[/tex]

3. Analyze the intervals:
- For [tex]\( (-\infty, -1) \)[/tex]
- We need to check if [tex]\( (f - g)(x) < 0 \)[/tex] for all [tex]\( x \)[/tex] in this interval.
- For [tex]\( (-\infty, 2) \)[/tex]
- We need to check if [tex]\( (f - g)(x) < 0 \)[/tex] for all [tex]\( x \)[/tex] in this interval.
- For [tex]\( (0, 3) \)[/tex]
- We need to check if [tex]\( (f - g)(x) < 0 \)[/tex] for all [tex]\( x \)[/tex] in this interval.
- For [tex]\( (2, \infty) \)[/tex]
- We need to check if [tex]\( (f - g)(x) < 0 \)[/tex] for all [tex]\( x \)[/tex] in this interval.

Given these analyses, among the provided intervals, the one that correctly shows where [tex]\((f - g)(x)\)[/tex] is negative is:

[tex]\[ (2, \infty) \][/tex]

Thus, the interval for which the value of [tex]\((f - g)(x)\)[/tex] is negative is [tex]\( (2, \infty) \)[/tex].