Certainly! Let's solve the given equation step-by-step:
First, we interpret the mixed numbers in fraction form to make it easier to handle the arithmetic.
1. We start with the mixed number [tex]\(2 \frac{2}{3}\)[/tex]:
- This can be converted to an improper fraction:
[tex]\[
2 \frac{2}{3} = 2 + \frac{2}{3} = \frac{6}{3} + \frac{2}{3} = \frac{8}{3}
\][/tex]
2. Next, we have the mixed number [tex]\(1 \frac{1}{3}\)[/tex]:
- Similarly, this can be converted to an improper fraction:
[tex]\[
1 \frac{1}{3} = 1 + \frac{1}{3} = \frac{3}{3} + \frac{1}{3} = \frac{4}{3}
\][/tex]
3. Now, we need to subtract these two fractions:
[tex]\[
\frac{8}{3} - \frac{4}{3}
\][/tex]
4. Since the denominators are the same, we can directly subtract the numerators:
[tex]\[
\frac{8 - 4}{3} = \frac{4}{3}
\][/tex]
5. Now, we'll convert this improper fraction back to a mixed number:
[tex]\[
\frac{4}{3} = 1 \frac{1}{3}
\][/tex]
So, the final result of the subtraction [tex]\(2 \frac{2}{3} - 1 \frac{1}{3}\)[/tex] is [tex]\(1 \frac{1}{3}\)[/tex].
Therefore, the correct solution corresponds to:
[tex]\[ \boxed{1 \frac{1}{3}} \][/tex]