Answer :

Certainly! Let's solve the given equation step-by-step:

First, we interpret the mixed numbers in fraction form to make it easier to handle the arithmetic.

1. We start with the mixed number [tex]\(2 \frac{2}{3}\)[/tex]:
- This can be converted to an improper fraction:
[tex]\[ 2 \frac{2}{3} = 2 + \frac{2}{3} = \frac{6}{3} + \frac{2}{3} = \frac{8}{3} \][/tex]

2. Next, we have the mixed number [tex]\(1 \frac{1}{3}\)[/tex]:
- Similarly, this can be converted to an improper fraction:
[tex]\[ 1 \frac{1}{3} = 1 + \frac{1}{3} = \frac{3}{3} + \frac{1}{3} = \frac{4}{3} \][/tex]

3. Now, we need to subtract these two fractions:
[tex]\[ \frac{8}{3} - \frac{4}{3} \][/tex]

4. Since the denominators are the same, we can directly subtract the numerators:
[tex]\[ \frac{8 - 4}{3} = \frac{4}{3} \][/tex]

5. Now, we'll convert this improper fraction back to a mixed number:
[tex]\[ \frac{4}{3} = 1 \frac{1}{3} \][/tex]

So, the final result of the subtraction [tex]\(2 \frac{2}{3} - 1 \frac{1}{3}\)[/tex] is [tex]\(1 \frac{1}{3}\)[/tex].

Therefore, the correct solution corresponds to:
[tex]\[ \boxed{1 \frac{1}{3}} \][/tex]