Answer :
Certainly! Let's compare the values of [tex]\(\sqrt{130}\)[/tex] and [tex]\(\frac{117}{8}\)[/tex] step by step.
1. Calculate [tex]\(\sqrt{130}\)[/tex]:
- The square root of 130 is approximately 11.40175425099138.
2. Calculate [tex]\(\frac{117}{8}\)[/tex]:
- Dividing 117 by 8 gives us [tex]\(\frac{117}{8} = 14.625\)[/tex].
3. Compare the Values:
- We need to compare 11.40175425099138 and 14.625.
- Clearly, 11.40175425099138 is less than 14.625.
Thus, we have:
[tex]\[ \sqrt{130} < \frac{117}{8} \][/tex]
So, the correct comparison using the symbols [tex]\(\langle\)[/tex], [tex]\(\rangle\)[/tex], or [tex]\(=\)[/tex] is:
[tex]\[ \sqrt{130} < \frac{117}{8} \][/tex]
1. Calculate [tex]\(\sqrt{130}\)[/tex]:
- The square root of 130 is approximately 11.40175425099138.
2. Calculate [tex]\(\frac{117}{8}\)[/tex]:
- Dividing 117 by 8 gives us [tex]\(\frac{117}{8} = 14.625\)[/tex].
3. Compare the Values:
- We need to compare 11.40175425099138 and 14.625.
- Clearly, 11.40175425099138 is less than 14.625.
Thus, we have:
[tex]\[ \sqrt{130} < \frac{117}{8} \][/tex]
So, the correct comparison using the symbols [tex]\(\langle\)[/tex], [tex]\(\rangle\)[/tex], or [tex]\(=\)[/tex] is:
[tex]\[ \sqrt{130} < \frac{117}{8} \][/tex]
Answer:
[tex]\sqrt{130} < \dfrac{117}{8}.[/tex]
Step-by-step explanation:
Let's compare [tex]\sqrt{130} \: \:and\:\: \dfrac{117}{8}[/tex] in a simple way:
1. [tex]\sqrt{130}[/tex] is a bit more than 11 but less than 12. Let's say it's around 11.4.
2.[tex]\dfrac{117}{8}[/tex] means dividing 117 by 8, which gives us 14.625.
Now, compare them:
11.4 is less than 14.625.
So, [tex]\sqrt{130} < \dfrac{117}{8}[/tex]