Answered

Compare [tex]\sqrt{130}[/tex] and [tex]\frac{117}{8}[/tex] using [tex]\ \textless \ , \ \textgreater \ ,[/tex] or [tex]=[/tex].



Answer :

Certainly! Let's compare the values of [tex]\(\sqrt{130}\)[/tex] and [tex]\(\frac{117}{8}\)[/tex] step by step.

1. Calculate [tex]\(\sqrt{130}\)[/tex]:
- The square root of 130 is approximately 11.40175425099138.

2. Calculate [tex]\(\frac{117}{8}\)[/tex]:
- Dividing 117 by 8 gives us [tex]\(\frac{117}{8} = 14.625\)[/tex].

3. Compare the Values:
- We need to compare 11.40175425099138 and 14.625.
- Clearly, 11.40175425099138 is less than 14.625.

Thus, we have:
[tex]\[ \sqrt{130} < \frac{117}{8} \][/tex]

So, the correct comparison using the symbols [tex]\(\langle\)[/tex], [tex]\(\rangle\)[/tex], or [tex]\(=\)[/tex] is:
[tex]\[ \sqrt{130} < \frac{117}{8} \][/tex]
Hi1315

Answer:

[tex]\sqrt{130} < \dfrac{117}{8}.[/tex]

Step-by-step explanation:

Let's compare [tex]\sqrt{130} \: \:and\:\: \dfrac{117}{8}[/tex]  in a simple way:

1. [tex]\sqrt{130}[/tex] is a bit more than 11 but less than 12. Let's say it's around 11.4.

2.[tex]\dfrac{117}{8}[/tex] means dividing 117 by 8, which gives us 14.625.

Now, compare them:

11.4 is less than 14.625.

So, [tex]\sqrt{130} < \dfrac{117}{8}[/tex]