Determine the number that must be added to make each of the following a perfect square trinomial and express each perfect square trinomial as a square of a binomial.

Example:
[tex]\[ x^2 + 8x + 16 \][/tex]
[tex]\[ (x + 4)(x + 4) = (x + 4)^2 \][/tex]

1. [tex]\[ x^2 + 2x + \][/tex]
[tex]\[ (x + 1)(x + 1) = (x + 1)^2 \][/tex]

2. [tex]\[ m^2 + 6m + \][/tex]
[tex]\[ (m + 3)(m + 3) = (m + 3)^2 \][/tex]

3. [tex]\[ a^2 - 4a + \][/tex]
[tex]\[ (a - 2)(a - 2) = (a - 2)^2 \][/tex]

4. [tex]\[ n^2 - 16n + \][/tex]
[tex]\[ (n - 8)(n - 8) = (n - 8)^2 \][/tex]

5. [tex]\[ y^2 + 10y + \][/tex]
[tex]\[ (y + 5)(y + 5) = (y + 5)^2 \][/tex]



Answer :

Alright, let's go through each given expression and the process to determine the number that must be added to make each expression a perfect square trinomial. I'll then express each perfect square trinomial as a square of a binomial.

### 1. [tex]\( x^2 + 2x + \)[/tex]

To make this a perfect square trinomial, we need to complete the square:
- Take the coefficient of [tex]\( x \)[/tex], which is [tex]\( 2 \)[/tex].
- Divide it by [tex]\( 2 \)[/tex] to get [tex]\( \frac{2}{2} = 1 \)[/tex].
- Square the result to get [tex]\( 1^2 = 1 \)[/tex].

So, the number that must be added is [tex]\( 1 \)[/tex].

Thus, [tex]\( x^2 + 2x + 1 = (x + 1)^2 \)[/tex].

### 2. [tex]\( m^2 + 6m + \)[/tex]

To make this a perfect square trinomial, we complete the square:
- Take the coefficient of [tex]\( m \)[/tex], which is [tex]\( 6 \)[/tex].
- Divide it by [tex]\( 2 \)[/tex] to get [tex]\( \frac{6}{2} = 3 \)[/tex].
- Square the result to get [tex]\( 3^2 = 9 \)[/tex].

So, the number that must be added is [tex]\( 9 \)[/tex].

Thus, [tex]\( m^2 + 6m + 9 = (m + 3)^2 \)[/tex].

### 3. [tex]\( a^2 - 4a + \)[/tex]

To make this a perfect square trinomial, we complete the square:
- Take the coefficient of [tex]\( a \)[/tex], which is [tex]\( -4 \)[/tex].
- Divide it by [tex]\( 2 \)[/tex] to get [tex]\( \frac{-4}{2} = -2 \)[/tex].
- Square the result to get [tex]\( (-2)^2 = 4 \)[/tex].

So, the number that must be added is [tex]\( 4 \)[/tex].

Thus, [tex]\( a^2 - 4a + 4 = (a - 2)^2 \)[/tex].

### 4. [tex]\( n^2 - 16n + \)[/tex]

To make this a perfect square trinomial, we complete the square:
- Take the coefficient of [tex]\( n \)[/tex], which is [tex]\( -16 \)[/tex].
- Divide it by [tex]\( 2 \)[/tex] to get [tex]\( \frac{-16}{2} = -8 \)[/tex].
- Square the result to get [tex]\( (-8)^2 = 64 \)[/tex].

So, the number that must be added is [tex]\( 64 \)[/tex].

Thus, [tex]\( n^2 - 16n + 64 = (n - 8)^2 \)[/tex].

### 5. [tex]\( y^2 + 10y + \)[/tex]

To make this a perfect square trinomial, we complete the square:
- Take the coefficient of [tex]\( y \)[/tex], which is [tex]\( 10 \)[/tex].
- Divide it by [tex]\( 2 \)[/tex] to get [tex]\( \frac{10}{2} = 5 \)[/tex].
- Square the result to get [tex]\( 5^2 = 25 \)[/tex].

So, the number that must be added is [tex]\( 25 \)[/tex].

Thus, [tex]\( y^2 + 10y + 25 = (y + 5)^2 \)[/tex].

In summary:

1. [tex]\( x^2 + 2x + 1 = (x + 1)^2 \)[/tex]
2. [tex]\( m^2 + 6m + 9 = (m + 3)^2 \)[/tex]
3. [tex]\( a^2 - 4a + 4 = (a - 2)^2 \)[/tex]
4. [tex]\( n^2 - 16n + 64 = (n - 8)^2 \)[/tex]
5. [tex]\( y^2 + 10y + 25 = (y + 5)^2 \)[/tex]