Certainly! Let's solve the equation step-by-step.
First, we need to simplify each fraction separately:
1. [tex]\(\frac{1500}{100}\)[/tex]:
[tex]\[
\frac{1500}{100} = 15
\][/tex]
2. [tex]\(\frac{400}{20}\)[/tex]:
[tex]\[
\frac{400}{20} = 20
\][/tex]
3. [tex]\(\frac{50}{50}\)[/tex]:
[tex]\[
\frac{50}{50} = 1
\][/tex]
4. [tex]\(\frac{645}{645}\)[/tex]:
[tex]\[
\frac{645}{645} = 1
\][/tex]
Now that we've simplified the fractions, our expression becomes:
[tex]\[
15 + 20 + 1 - 1
\][/tex]
Next, let's perform the addition and subtraction in order:
1. First, add the fractions:
[tex]\[
15 + 20 = 35
\][/tex]
2. Then, add the next term:
[tex]\[
35 + 1 = 36
\][/tex]
3. Finally, subtract the last term:
[tex]\[
36 - 1 = 35
\][/tex]
Therefore, the result of the expression [tex]\( \frac{1500}{100} + \frac{400}{20} + \frac{50}{50} - \frac{645}{645} \)[/tex] is [tex]\( 35 \)[/tex].
The answer is:
a) 35