Answer :
To solve the question of how [tex]\(13 \times 19\)[/tex] can be rewritten using the difference of two squares identity, we check each given expression one by one and see which one equals to [tex]\( 13 \times 19 \)[/tex].
Recall the difference of squares identity:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
We'll evaluate the product for each provided pair and match it to [tex]\( 13 \times 19 = 247 \)[/tex].
1. First expression: [tex]\((13 - 3)(19 + 3)\)[/tex]
Simplify:
[tex]\[ (13 - 3) = 10 \][/tex]
[tex]\[ (19 + 3) = 22 \][/tex]
Evaluate:
[tex]\[ 10 \times 22 = 220 \][/tex]
2. Second expression: [tex]\((10 + 3)(22 - 3)\)[/tex]
Simplify:
[tex]\[ (10 + 3) = 13 \][/tex]
[tex]\[ (22 - 3) = 19 \][/tex]
Evaluate:
[tex]\[ 13 \times 19 = 247 \][/tex]
3. Third expression: [tex]\((16 - 3)(16 + 3)\)[/tex]
Simplify:
[tex]\[ (16 - 3) = 13 \][/tex]
[tex]\[ (16 + 3) = 19 \][/tex]
Evaluate:
[tex]\[ 13 \times 19 = 247 \][/tex]
4. Fourth expression: [tex]\((11 - 3)(11 + 3)\)[/tex]
Simplify:
[tex]\[ (11 - 3) = 8 \][/tex]
[tex]\[ (11 + 3) = 14 \][/tex]
Evaluate:
[tex]\[ 8 \times 14 = 112 \][/tex]
Only the second and third expressions correctly match the product [tex]\( 13 \times 19 = 247 \)[/tex]. Hence, the correct ways to rewrite [tex]\( 13 \times 19 \)[/tex] using the difference of two squares identity are:
[tex]\[ (10 + 3)(22 - 3) \quad \text{and} \quad (16 - 3)(16 + 3) \][/tex]
Recall the difference of squares identity:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
We'll evaluate the product for each provided pair and match it to [tex]\( 13 \times 19 = 247 \)[/tex].
1. First expression: [tex]\((13 - 3)(19 + 3)\)[/tex]
Simplify:
[tex]\[ (13 - 3) = 10 \][/tex]
[tex]\[ (19 + 3) = 22 \][/tex]
Evaluate:
[tex]\[ 10 \times 22 = 220 \][/tex]
2. Second expression: [tex]\((10 + 3)(22 - 3)\)[/tex]
Simplify:
[tex]\[ (10 + 3) = 13 \][/tex]
[tex]\[ (22 - 3) = 19 \][/tex]
Evaluate:
[tex]\[ 13 \times 19 = 247 \][/tex]
3. Third expression: [tex]\((16 - 3)(16 + 3)\)[/tex]
Simplify:
[tex]\[ (16 - 3) = 13 \][/tex]
[tex]\[ (16 + 3) = 19 \][/tex]
Evaluate:
[tex]\[ 13 \times 19 = 247 \][/tex]
4. Fourth expression: [tex]\((11 - 3)(11 + 3)\)[/tex]
Simplify:
[tex]\[ (11 - 3) = 8 \][/tex]
[tex]\[ (11 + 3) = 14 \][/tex]
Evaluate:
[tex]\[ 8 \times 14 = 112 \][/tex]
Only the second and third expressions correctly match the product [tex]\( 13 \times 19 = 247 \)[/tex]. Hence, the correct ways to rewrite [tex]\( 13 \times 19 \)[/tex] using the difference of two squares identity are:
[tex]\[ (10 + 3)(22 - 3) \quad \text{and} \quad (16 - 3)(16 + 3) \][/tex]