Answer :

Let's solve the expression step-by-step, ensuring we follow the order of operations properly (parentheses/brackets, then addition and subtraction):

1. Innermost Parentheses: We first solve the innermost parentheses.
[tex]\[ 4 + 4 = 8 \][/tex]

2. Substitute back and simplify: We substitute 8 back into the expression.
[tex]\[ 17 - 8 \][/tex]
[tex]\[ 17 - 8 = 9 \][/tex]

3. Next, simplify inside the brackets: The expression now becomes:
[tex]\[ 9 + 3 \][/tex]
[tex]\[ 9 + 3 = 12 \][/tex]

4. Then, move to the curly braces: Simplify inside the curly braces:
[tex]\[ 4 - 12 \][/tex]
[tex]\[ 4 - 12 = -8 \][/tex]

5. Include remaining operation inside the curly braces:
[tex]\[ -8 - 5 \][/tex]
[tex]\[ -8 - 5 = -13 \][/tex]

6. Final part of the expression: Now we consider the remaining part of the expression:
[tex]\[ 6 + (-13) \][/tex]
[tex]\[ 6 - 13 = -7 \][/tex]

Therefore, the value of the expression [tex]\(6+\{4-[(17-(4+4)]+3\}-5\)[/tex] is [tex]\(-7\)[/tex].