\begin{tabular}{|c|c|c|}
\hline
Comparison & Benchmark & True or False \\
\hline
[tex]$\frac{3}{8} \ \textgreater \ \frac{2}{3}$[/tex] & [tex]$\frac{1}{2}$[/tex] & False \\
\hline
[tex]$\frac{9}{12} \ \textless \ \frac{3}{2}$[/tex] & [tex]$?$[/tex] & [tex]$?$[/tex] \\
\hline
\end{tabular}



Answer :

To solve the comparison [tex]\(\frac{9}{12}<\frac{3}{2}\)[/tex] and determine whether it is true or false, we will follow these steps:

1. Simplify the fractions (if possible):
- Simplify [tex]\(\frac{9}{12}\)[/tex]:
[tex]\[ \frac{9}{12} = \frac{9 \div 3}{12 \div 3} = \frac{3}{4} \][/tex]
- Simplify [tex]\(\frac{3}{2}\)[/tex]:
[tex]\[ \frac{3}{2} = \text{This fraction is already in its simplest form.} \][/tex]

2. Convert the fractions to decimal form:
- Convert [tex]\(\frac{3}{4}\)[/tex] to a decimal:
[tex]\[ \frac{3}{4} = 0.75 \][/tex]
- Convert [tex]\(\frac{3}{2}\)[/tex] to a decimal:
[tex]\[ \frac{3}{2} = 1.5 \][/tex]

3. Compare the decimal values:
- Compare [tex]\(0.75\)[/tex] and [tex]\(1.5\)[/tex]:
[tex]\[ 0.75 < 1.5 \][/tex]

Since [tex]\(0.75\)[/tex] is less than [tex]\(1.5\)[/tex], the comparison [tex]\(\frac{9}{12}<\frac{3}{2}\)[/tex] is true.

So, the detailed solution to the problem is:

[tex]\[ \boxed{(0.75, 1.5, \text{True})} \][/tex]

Thus, the value of the benchmark is not directly required here, and we have:

[tex]\[ \frac{9}{12} < \frac{3}{2} \quad \text{is} \quad \text{True} \][/tex]