a) [tex]\(\frac{x^2}{m+x}+\frac{np^2}{m^2+mx}=x\)[/tex]

b) [tex]\(\frac{x+a}{x-a}+\frac{x+b}{x-b}=2\)[/tex]

c) [tex]\(\frac{b-x}{a+x}-\frac{c-x}{x-a}=\frac{a(2x-c)}{x^2-a^2}\)[/tex]

Determine [tex]\(m\)[/tex] de modo que [tex]\(x=9\)[/tex] seja raiz da equação [tex]\((6m-1)x^2-(2m+5)x+3=0\)[/tex].



Answer :

Let's solve the problem step-by-step where we need to find the value of [tex]\( m \)[/tex] such that [tex]\( x = 9 \)[/tex] is a root of the equation [tex]\((6m - 1)x^2 - (2m + 5)x + 3 = 0\)[/tex].

### Step-by-Step Solution

1. Substitute [tex]\( x = 9 \)[/tex] into the equation:
[tex]\[ (6m - 1)(9^2) - (2m + 5)(9) + 3 = 0 \][/tex]

2. Calculate [tex]\( 9^2 \)[/tex]:
[tex]\[ 9^2 = 81 \][/tex]

3. Insert [tex]\( 81 \)[/tex] for [tex]\( 9^2 \)[/tex]:
[tex]\[ (6m - 1) \cdot 81 - (2m + 5) \cdot 9 + 3 = 0 \][/tex]

4. Distribute the terms in the equation:
[tex]\[ 81 \cdot (6m - 1) - 9 \cdot (2m + 5) + 3 = 0 \][/tex]
[tex]\[ 81 \cdot 6m - 81 - 18m - 45 + 3 = 0 \][/tex]

5. Simplify the equation:
[tex]\[ 486m - 81 - 18m - 45 + 3 = 0 \][/tex]

6. Combine like terms:
[tex]\[ 486m - 18m - 81 - 45 + 3 = 0 \][/tex]
[tex]\[ 468m - 123 = 0 \][/tex]

7. Isolate [tex]\( m \)[/tex]:
[tex]\[ 468m = 123 \][/tex]

8. Solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{123}{468} \][/tex]

9. Simplify the fraction:
[tex]\[ m = \frac{41}{156} \][/tex]

Therefore, the value of [tex]\( m \)[/tex] that makes [tex]\( x = 9 \)[/tex] a root of the equation [tex]\((6m - 1)x^2 - (2m + 5)x + 3 = 0\)[/tex] is:
[tex]\[ m = \frac{41}{156} \][/tex]