To simplify the given expressions step-by-step, follow these instructions:
1. Combine Like Terms for Each Expression:
First, let's group and sum the like terms within each expression separately.
The first expression is:
[tex]\[
-4y - 3y - y + 3 + 6
\][/tex]
- Combine the terms involving [tex]\( y \)[/tex]:
[tex]\[
-4y - 3y - y = -8y
\][/tex]
- Combine the constant terms:
[tex]\[
3 + 6 = 9
\][/tex]
- So, the first expression simplifies to:
[tex]\[
-8y + 9
\][/tex]
The second expression is:
[tex]\[
-4y - y - 3y + 9
\][/tex]
- Combine the terms involving [tex]\( y \)[/tex]:
[tex]\[
-4y - y - 3y = -8y
\][/tex]
- The constant term remains:
[tex]\[
9
\][/tex]
- So, the second expression simplifies to:
[tex]\[
-8y + 9
\][/tex]
2. Combine Simplified Expressions:
We now combine the results of the two simplified expressions.
[tex]\[
(-8y + 9) + (-8y + 9)
\][/tex]
- Combine the terms involving [tex]\( y \)[/tex]:
[tex]\[
-8y - 8y = -16y
\][/tex]
- Combine the constant terms:
[tex]\[
9 + 9 = 18
\][/tex]
3. Write the Final Simplified Form:
After combining all the terms, the final simplified form of the given expressions is:
[tex]\[
-16y + 18
\][/tex]
Therefore, the result is:
[tex]\[
-16y + 18
\][/tex]