Answer :

To simplify the given expressions step-by-step, follow these instructions:

1. Combine Like Terms for Each Expression:

First, let's group and sum the like terms within each expression separately.

The first expression is:
[tex]\[ -4y - 3y - y + 3 + 6 \][/tex]

- Combine the terms involving [tex]\( y \)[/tex]:
[tex]\[ -4y - 3y - y = -8y \][/tex]
- Combine the constant terms:
[tex]\[ 3 + 6 = 9 \][/tex]
- So, the first expression simplifies to:
[tex]\[ -8y + 9 \][/tex]

The second expression is:
[tex]\[ -4y - y - 3y + 9 \][/tex]

- Combine the terms involving [tex]\( y \)[/tex]:
[tex]\[ -4y - y - 3y = -8y \][/tex]
- The constant term remains:
[tex]\[ 9 \][/tex]
- So, the second expression simplifies to:
[tex]\[ -8y + 9 \][/tex]

2. Combine Simplified Expressions:

We now combine the results of the two simplified expressions.

[tex]\[ (-8y + 9) + (-8y + 9) \][/tex]

- Combine the terms involving [tex]\( y \)[/tex]:
[tex]\[ -8y - 8y = -16y \][/tex]
- Combine the constant terms:
[tex]\[ 9 + 9 = 18 \][/tex]

3. Write the Final Simplified Form:

After combining all the terms, the final simplified form of the given expressions is:
[tex]\[ -16y + 18 \][/tex]

Therefore, the result is:
[tex]\[ -16y + 18 \][/tex]