Write an expression that can be a rule for the number sequence below.

[tex]\[ 5, 9, 13, 17, 21, \ldots \][/tex]

A. [tex]\( 5n \)[/tex], where [tex]\( n \)[/tex] is equal to [tex]\( 0, 1, 2, 3, 4 \)[/tex]

B. [tex]\( 5 + n \)[/tex], where [tex]\( n \)[/tex] is equal to [tex]\( 0, 1, 2, 3, 4 \)[/tex]

C. [tex]\( 5 + 4n \)[/tex], where [tex]\( n \)[/tex] is equal to [tex]\( 0, 1, 2, 3 \)[/tex]

D. [tex]\( 5n + 4 \)[/tex], where [tex]\( n \)[/tex] is equal to [tex]\( 1, 2, 3, 4 \)[/tex]



Answer :

Let's analyze the given sequence: [tex]\( 5, 9, 13, 17, 21, \ldots \)[/tex].

### Step-by-Step Analysis:

1. Identify the Sequence Pattern:
Calculate the differences between consecutive terms:

[tex]\[ \begin{align*} 9 - 5 &= 4, \\ 13 - 9 &= 4, \\ 17 - 13 &= 4, \\ 21 - 17 &= 4. \end{align*} \][/tex]

The differences are constant, indicating that this is an arithmetic sequence with a common difference of [tex]\( 4 \)[/tex].

2. Find the General Formula:
The general form of an arithmetic sequence is given by:

[tex]\[ a_n = a + (n-1)d \][/tex]

Where [tex]\( a \)[/tex] is the first term, [tex]\( d \)[/tex] is the common difference, and [tex]\( n \)[/tex] is the term number.

For the given sequence:
- The first term [tex]\( a \)[/tex] is [tex]\( 5 \)[/tex].
- The common difference [tex]\( d \)[/tex] is [tex]\( 4 \)[/tex].

Substituting these values into the formula, we get:

[tex]\[ a_n = 5 + (n-1) \cdot 4 \][/tex]

Simplifying the expression:

[tex]\[ a_n = 5 + 4n - 4 = 4n + 1 \][/tex]

### Checking Against the Given Options:

1. Option 1: [tex]\( 5n \)[/tex], where [tex]\( n \)[/tex] is equal to [tex]\( 0, 1, 2, 3, 4 \)[/tex]
[tex]\[ a_n = 5n \][/tex]

This won't generate the correct sequence, as:
- For [tex]\( n = 0 \)[/tex], [tex]\( a_0 = 0 \)[/tex]: which starts with 0, not 5.
- For [tex]\( n = 1 \)[/tex], [tex]\( a_1 = 5 \)[/tex]: which matches.
- For [tex]\( n = 2 \)[/tex], [tex]\( a_2 = 10 \)[/tex]: which does not match the sequence.

This option is incorrect.

2. Option 2: [tex]\( 5 + n \)[/tex], where [tex]\( n \)[/tex] is equal to [tex]\( 0, 1, 2, 3, 4 \)[/tex]
[tex]\[ a_n = 5 + n \][/tex]

This won't generate the correct sequence, as:
- For [tex]\( n = 0 \)[/tex], [tex]\( a_0 = 5 \)[/tex]: which matches.
- For [tex]\( n = 1 \)[/tex], [tex]\( a_1 = 6 \)[/tex]: which does not match the sequence.

This option is incorrect.

3. Option 3: [tex]\( 5 + 4n \)[/tex], where [tex]\( n \)[/tex] is equal to [tex]\( 0, 1, 2, 3 \)[/tex]
[tex]\[ a_n = 5 + 4n \][/tex]

This generates the correct sequence:
- For [tex]\( n = 0 \)[/tex], [tex]\( a_0 = 5 \)[/tex] (matches).
- For [tex]\( n = 1 \)[/tex], [tex]\( a_1 = 9 \)[/tex] (matches).
- For [tex]\( n = 2 \)[/tex], [tex]\( a_2 = 13 \)[/tex] (matches).
- For [tex]\( n = 3 \)[/tex], [tex]\( a_3 = 17 \)[/tex] (matches).
- For [tex]\( n = 4 \)[/tex], [tex]\( a_4 = 21 \)[/tex] (matches).

This option is correct.

4. Option 4: [tex]\( 5h + 4 \)[/tex], where [tex]\( h \)[/tex] is equal to [tex]\( 1, 2, 3, 4 \)[/tex]
[tex]\[ a_n = 5h + 4 \][/tex]

This won't generate the correct sequence, as [tex]\( h \)[/tex] starts from [tex]\( 1 \)[/tex]:
- For [tex]\( h = 1 \)[/tex], [tex]\( a_1 = 9 \)[/tex]: doesn't start with 5.
- For [tex]\( h = 2 \)[/tex], [tex]\( a_2 = 14 \)[/tex]: doesn't give the correct sequence.

This option is incorrect.

### Conclusion:
The correct rule for the sequence [tex]\( 5, 9, 13, 17, 21, \ldots \)[/tex] is:

[tex]\[ \boxed{5 + 4n}, \text{ where } n \text{ is equal to } 0, 1, 2, 3 \][/tex]