Answer :
Let's work through the genotype frequencies, the number of moths released, and the changes observed over time in generations up to [tex]\(G_5\)[/tex]. The following steps outline the process of understanding these changes.
### 1. Initial Phenotype Frequencies
- Typica (Light) at the initial frequency: [tex]\(0.49\)[/tex]
- Carbonaria (Dark) at the initial frequency: [tex]\(0.51\)[/tex]
### 2. Frequencies at [tex]\(G_5\)[/tex]
- Typica (Light) at [tex]\(G_5\)[/tex] frequency: [tex]\(0.94\)[/tex]
- Carbonaria (Dark) at [tex]\(G_5\)[/tex] frequency: [tex]\(0.06\)[/tex]
### 3. Initial Allele Frequencies
- Allele [tex]\(q\)[/tex] (d) initial frequency: [tex]\(0.70\)[/tex]
- Allele [tex]\(p\)[/tex] (D) initial frequency: [tex]\(0.30\)[/tex]
### 4. Genotype Frequencies and Numbers
### Initial Genotype Frequencies and Numbers:
#### Typica (Light), Genotype [tex]\(dd\)[/tex], [tex]\(q^2\)[/tex]:
- Initial Frequency: [tex]\(0.49\)[/tex]
- Moths Released: 490
- [tex]\(dd\)[/tex] Moths at Initial Generation: [tex]\(490.0\)[/tex]
#### Carbonaria (Dark), Genotype [tex]\(Dd\)[/tex], [tex]\(2pq\)[/tex]:
- Initial Frequency: [tex]\(0.42\)[/tex]
- Moths Released: 420
- [tex]\(Dd\)[/tex] Moths at Initial Generation: [tex]\(420.0\)[/tex]
#### Carbonaria (Dark), Genotype [tex]\(DD\)[/tex], [tex]\(p^2\)[/tex]:
- Initial Frequency: [tex]\(0.09\)[/tex]
- Moths Released: 90
- [tex]\(DD\)[/tex] Moths at Initial Generation: [tex]\(90.0\)[/tex]
### Frequencies and Number of Moths at Generation [tex]\(G_5\)[/tex]:
#### Typica (Light), Genotype [tex]\(dd\)[/tex]:
- Frequency at [tex]\(G_5\)[/tex]: [tex]\(0.94\)[/tex]
- Number of Moths at [tex]\(G_5\)[/tex]: [tex]\(876.08\)[/tex]
#### Carbonaria (Dark), Genotype [tex]\(Dd\)[/tex]:
- Frequency at [tex]\(G_5\)[/tex]: [tex]\(0.06\)[/tex]
- Number of Moths at [tex]\(G_5\)[/tex]: [tex]\(55.92\)[/tex]
#### Carbonaria (Dark), Genotype [tex]\(DD\)[/tex]:
- There were no [tex]\(DD\)[/tex] (Dark) moths at [tex]\(G_5\)[/tex], which shows:
- Frequency at [tex]\(G_5\)[/tex]: [tex]\(0.0\)[/tex]
- Initial released moths: [tex]\(90.0\)[/tex] (since no [tex]\(DD\)[/tex] dark moths remained by [tex]\(G_5\)[/tex])
### Final Table Creation:
Finally, we can fill in the required table based on the data we have:
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Genotype & Phenotype & Initial Frequency & Initial Number of Moths & Frequency at [tex]\(G_5\)[/tex] & Number of Moths at [tex]\(G_5\)[/tex] \\
\hline
[tex]$q^2$[/tex] & Light (dd) & 0.49 & 490.0 & 0.94 & 876.08 \\
\hline
[tex]$2pq$[/tex] & Dark (Dd) & 0.42 & 420.0 & 0.06 & 55.92 \\
\hline
[tex]$p^2$[/tex] & Dark (DD) & 0.09 & 90.0 & 0.0 & 90.0 \\
\hline
\end{tabular}
This table summarizes the initial frequencies and number of moths for each genotype and the state at [tex]\(G_5\)[/tex] after several generations.
### 1. Initial Phenotype Frequencies
- Typica (Light) at the initial frequency: [tex]\(0.49\)[/tex]
- Carbonaria (Dark) at the initial frequency: [tex]\(0.51\)[/tex]
### 2. Frequencies at [tex]\(G_5\)[/tex]
- Typica (Light) at [tex]\(G_5\)[/tex] frequency: [tex]\(0.94\)[/tex]
- Carbonaria (Dark) at [tex]\(G_5\)[/tex] frequency: [tex]\(0.06\)[/tex]
### 3. Initial Allele Frequencies
- Allele [tex]\(q\)[/tex] (d) initial frequency: [tex]\(0.70\)[/tex]
- Allele [tex]\(p\)[/tex] (D) initial frequency: [tex]\(0.30\)[/tex]
### 4. Genotype Frequencies and Numbers
### Initial Genotype Frequencies and Numbers:
#### Typica (Light), Genotype [tex]\(dd\)[/tex], [tex]\(q^2\)[/tex]:
- Initial Frequency: [tex]\(0.49\)[/tex]
- Moths Released: 490
- [tex]\(dd\)[/tex] Moths at Initial Generation: [tex]\(490.0\)[/tex]
#### Carbonaria (Dark), Genotype [tex]\(Dd\)[/tex], [tex]\(2pq\)[/tex]:
- Initial Frequency: [tex]\(0.42\)[/tex]
- Moths Released: 420
- [tex]\(Dd\)[/tex] Moths at Initial Generation: [tex]\(420.0\)[/tex]
#### Carbonaria (Dark), Genotype [tex]\(DD\)[/tex], [tex]\(p^2\)[/tex]:
- Initial Frequency: [tex]\(0.09\)[/tex]
- Moths Released: 90
- [tex]\(DD\)[/tex] Moths at Initial Generation: [tex]\(90.0\)[/tex]
### Frequencies and Number of Moths at Generation [tex]\(G_5\)[/tex]:
#### Typica (Light), Genotype [tex]\(dd\)[/tex]:
- Frequency at [tex]\(G_5\)[/tex]: [tex]\(0.94\)[/tex]
- Number of Moths at [tex]\(G_5\)[/tex]: [tex]\(876.08\)[/tex]
#### Carbonaria (Dark), Genotype [tex]\(Dd\)[/tex]:
- Frequency at [tex]\(G_5\)[/tex]: [tex]\(0.06\)[/tex]
- Number of Moths at [tex]\(G_5\)[/tex]: [tex]\(55.92\)[/tex]
#### Carbonaria (Dark), Genotype [tex]\(DD\)[/tex]:
- There were no [tex]\(DD\)[/tex] (Dark) moths at [tex]\(G_5\)[/tex], which shows:
- Frequency at [tex]\(G_5\)[/tex]: [tex]\(0.0\)[/tex]
- Initial released moths: [tex]\(90.0\)[/tex] (since no [tex]\(DD\)[/tex] dark moths remained by [tex]\(G_5\)[/tex])
### Final Table Creation:
Finally, we can fill in the required table based on the data we have:
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Genotype & Phenotype & Initial Frequency & Initial Number of Moths & Frequency at [tex]\(G_5\)[/tex] & Number of Moths at [tex]\(G_5\)[/tex] \\
\hline
[tex]$q^2$[/tex] & Light (dd) & 0.49 & 490.0 & 0.94 & 876.08 \\
\hline
[tex]$2pq$[/tex] & Dark (Dd) & 0.42 & 420.0 & 0.06 & 55.92 \\
\hline
[tex]$p^2$[/tex] & Dark (DD) & 0.09 & 90.0 & 0.0 & 90.0 \\
\hline
\end{tabular}
This table summarizes the initial frequencies and number of moths for each genotype and the state at [tex]\(G_5\)[/tex] after several generations.