Answer :

Certainly! Let's solve the given inequality step-by-step.

Given:
[tex]\[ 2r - \frac{5}{3}r > -\frac{1}{3} \][/tex]

Step 1: Combine like terms on the left-hand side.

First, write the term [tex]\(2r\)[/tex] with a common denominator of 3:
[tex]\[ 2r = \frac{6}{3}r \][/tex]

Now we can rewrite the inequality, substituting [tex]\(2r\)[/tex]:
[tex]\[ \frac{6}{3}r - \frac{5}{3}r > -\frac{1}{3} \][/tex]

Step 2: Simplify the left side by combining the fractions:

Subtract the fractions:
[tex]\[ \left(\frac{6}{3}r - \frac{5}{3}r\right) = \frac{6 - 5}{3}r = \frac{1}{3}r \][/tex]

So the inequality is now:
[tex]\[ \frac{1}{3}r > -\frac{1}{3} \][/tex]

Step 3: Isolate [tex]\(r\)[/tex] by eliminating the fraction:

To get rid of the denominator, multiply both sides of the inequality by 3:
[tex]\[ 3 \cdot \frac{1}{3}r > 3 \cdot -\frac{1}{3} \][/tex]

Which simplifies to:
[tex]\[ r > -1 \][/tex]

Thus, the simplified inequality is:
[tex]\[ r > -1 \][/tex]