Answer :
To solve this problem, we utilize Newton's Law of Heating, given by the formula:
[tex]\[ T = T_a + (T_0 - T_a) \cdot e^{-k t} \][/tex]
Let's break down the solution step-by-step:
1. Identify Given Values:
- [tex]\( T_a = 310^\circ \text{F} \)[/tex] (oven temperature)
- [tex]\( T_0 = 70^\circ \text{F} \)[/tex] (initial temperature of the turkey)
- [tex]\( T = 122^\circ \text{F} \)[/tex] (temperature of the turkey after 2 hours)
- [tex]\( t = 2 \)[/tex] hours (time when the temperature is measured)
2. Set Up the Equation with the Given Values:
Substitute the known values into the formula:
[tex]\[ 122 = 310 + (70 - 310) \cdot e^{-2k} \][/tex]
3. Simplify the Equation:
[tex]\[ 122 = 310 - 240 \cdot e^{-2k} \][/tex]
[tex]\[ 122 - 310 = -240 \cdot e^{-2k} \][/tex]
[tex]\[ -188 = -240 \cdot e^{-2k} \][/tex]
[tex]\[ \frac{188}{240} = e^{-2k} \][/tex]
4. Solve for [tex]\( k \)[/tex]:
Take the natural logarithm on both sides to solve for [tex]\( k \)[/tex]:
[tex]\[ \ln \left(\frac{188}{240}\right) = -2k \][/tex]
[tex]\[ k = -\frac{1}{2} \ln \left(\frac{188}{240}\right) \][/tex]
[tex]\[ k \approx 0.122 \][/tex]
Thus, the decay constant [tex]\( k \)[/tex] is approximately [tex]\( 0.122 \)[/tex] to the nearest thousandth.
5. Use the Decay Constant to Find the Temperature After 5.5 Hours:
We use the same formula with [tex]\( t = 5.5 \)[/tex]:
[tex]\[ T = 310 + (70 - 310) \cdot e^{-0.122 \cdot 5.5} \][/tex]
Calculate the exponent:
[tex]\[ e^{-0.122 \cdot 5.5} \approx 0.397 \][/tex]
Substitute back into the equation:
[tex]\[ T = 310 + (70 - 310) \cdot 0.397 \][/tex]
[tex]\[ T = 310 - 240 \cdot 0.397 \][/tex]
[tex]\[ T \approx 310 - 95.92 \][/tex]
[tex]\[ T \approx 214.08 \][/tex]
6. Round to the Nearest Degree:
The temperature of the turkey after 5.5 hours is approximately [tex]\( 214^\circ \text{F} \)[/tex].
Therefore, after 5.5 hours, the temperature of the turkey is [tex]\( 187^\circ \text{F} \)[/tex].
[tex]\[ T = T_a + (T_0 - T_a) \cdot e^{-k t} \][/tex]
Let's break down the solution step-by-step:
1. Identify Given Values:
- [tex]\( T_a = 310^\circ \text{F} \)[/tex] (oven temperature)
- [tex]\( T_0 = 70^\circ \text{F} \)[/tex] (initial temperature of the turkey)
- [tex]\( T = 122^\circ \text{F} \)[/tex] (temperature of the turkey after 2 hours)
- [tex]\( t = 2 \)[/tex] hours (time when the temperature is measured)
2. Set Up the Equation with the Given Values:
Substitute the known values into the formula:
[tex]\[ 122 = 310 + (70 - 310) \cdot e^{-2k} \][/tex]
3. Simplify the Equation:
[tex]\[ 122 = 310 - 240 \cdot e^{-2k} \][/tex]
[tex]\[ 122 - 310 = -240 \cdot e^{-2k} \][/tex]
[tex]\[ -188 = -240 \cdot e^{-2k} \][/tex]
[tex]\[ \frac{188}{240} = e^{-2k} \][/tex]
4. Solve for [tex]\( k \)[/tex]:
Take the natural logarithm on both sides to solve for [tex]\( k \)[/tex]:
[tex]\[ \ln \left(\frac{188}{240}\right) = -2k \][/tex]
[tex]\[ k = -\frac{1}{2} \ln \left(\frac{188}{240}\right) \][/tex]
[tex]\[ k \approx 0.122 \][/tex]
Thus, the decay constant [tex]\( k \)[/tex] is approximately [tex]\( 0.122 \)[/tex] to the nearest thousandth.
5. Use the Decay Constant to Find the Temperature After 5.5 Hours:
We use the same formula with [tex]\( t = 5.5 \)[/tex]:
[tex]\[ T = 310 + (70 - 310) \cdot e^{-0.122 \cdot 5.5} \][/tex]
Calculate the exponent:
[tex]\[ e^{-0.122 \cdot 5.5} \approx 0.397 \][/tex]
Substitute back into the equation:
[tex]\[ T = 310 + (70 - 310) \cdot 0.397 \][/tex]
[tex]\[ T = 310 - 240 \cdot 0.397 \][/tex]
[tex]\[ T \approx 310 - 95.92 \][/tex]
[tex]\[ T \approx 214.08 \][/tex]
6. Round to the Nearest Degree:
The temperature of the turkey after 5.5 hours is approximately [tex]\( 214^\circ \text{F} \)[/tex].
Therefore, after 5.5 hours, the temperature of the turkey is [tex]\( 187^\circ \text{F} \)[/tex].