Click and drag like terms onto each other to simplify fully.

[tex]\[
\begin{array}{c}
-7 - 7x + x + 2 - 2y + 2y \\
-7 + 2 - 7x + x \\
-5 + x - 7x
\end{array}
\][/tex]

Result: [tex]\(\square\)[/tex]



Answer :

When simplifying the expression [tex]\(-7 - 7x + x + 2 - 2y + 2y\)[/tex], we need to combine like terms step-by-step.

1. Identify and combine the constant terms:
[tex]\[-7 + 2 = -5\][/tex]

2. Identify and combine the [tex]\(x\)[/tex]-terms:
[tex]\[-7x + x = -6x\][/tex]

3. Identify and combine the [tex]\(y\)[/tex]-terms:
[tex]\[-2y + 2y = 0\][/tex]

Since the [tex]\(y\)[/tex]-terms cancel each other out, we can omit them from the expression.

Bringing it all together, the final simplified expression is:
[tex]\[ -5 - 6x \][/tex]

Hence, the result is:
[tex]\[ -5 - 6x \][/tex]