Answer :
Sure! Let's evaluate each function for the specified values using function notation step-by-step.
1. For the function [tex]\( f(x) = 4x - 3 \)[/tex]:
- Evaluate [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = 4(0) - 3 = -3 \][/tex]
- Evaluate [tex]\( f(2) \)[/tex]:
[tex]\[ f(2) = 4(2) - 3 = 8 - 3 = 5 \][/tex]
- Evaluate [tex]\( f(4) \)[/tex]:
[tex]\[ f(4) = 4(4) - 3 = 16 - 3 = 13 \][/tex]
2. For the function [tex]\( g(x) = 5x + 2 \)[/tex]:
- Evaluate [tex]\( g(-3) \)[/tex]:
[tex]\[ g(-3) = 5(-3) + 2 = -15 + 2 = -13 \][/tex]
- Evaluate [tex]\( g(0) \)[/tex]:
[tex]\[ g(0) = 5(0) + 2 = 0 + 2 = 2 \][/tex]
- Evaluate [tex]\( g(1) \)[/tex]:
[tex]\[ g(1) = 5(1) + 2 = 5 + 2 = 7 \][/tex]
So, the evaluated values are:
- [tex]\( f(0) = -3 \)[/tex]
- [tex]\( f(2) = 5 \)[/tex]
- [tex]\( f(4) = 13 \)[/tex]
- [tex]\( g(-3) = -13 \)[/tex]
- [tex]\( g(0) = 2 \)[/tex]
- [tex]\( g(1) = 7 \)[/tex]
Hence, the result for these evaluations is:
[tex]\[ (-3, 5, 13, -13, 2, 7) \][/tex]
1. For the function [tex]\( f(x) = 4x - 3 \)[/tex]:
- Evaluate [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = 4(0) - 3 = -3 \][/tex]
- Evaluate [tex]\( f(2) \)[/tex]:
[tex]\[ f(2) = 4(2) - 3 = 8 - 3 = 5 \][/tex]
- Evaluate [tex]\( f(4) \)[/tex]:
[tex]\[ f(4) = 4(4) - 3 = 16 - 3 = 13 \][/tex]
2. For the function [tex]\( g(x) = 5x + 2 \)[/tex]:
- Evaluate [tex]\( g(-3) \)[/tex]:
[tex]\[ g(-3) = 5(-3) + 2 = -15 + 2 = -13 \][/tex]
- Evaluate [tex]\( g(0) \)[/tex]:
[tex]\[ g(0) = 5(0) + 2 = 0 + 2 = 2 \][/tex]
- Evaluate [tex]\( g(1) \)[/tex]:
[tex]\[ g(1) = 5(1) + 2 = 5 + 2 = 7 \][/tex]
So, the evaluated values are:
- [tex]\( f(0) = -3 \)[/tex]
- [tex]\( f(2) = 5 \)[/tex]
- [tex]\( f(4) = 13 \)[/tex]
- [tex]\( g(-3) = -13 \)[/tex]
- [tex]\( g(0) = 2 \)[/tex]
- [tex]\( g(1) = 7 \)[/tex]
Hence, the result for these evaluations is:
[tex]\[ (-3, 5, 13, -13, 2, 7) \][/tex]