After sitting on a shelf for a while, a can of soda at a room temperature of [tex]70^{\circ} F[/tex] is placed inside a refrigerator and slowly cools. The temperature of the refrigerator is [tex]34^{\circ} F[/tex]. Newton's Law of Cooling explains that the temperature of the can of soda will decrease proportionally to the difference between the temperature of the can of soda and the temperature of the refrigerator, as given by the formula below:

[tex]
T = T_a + (T_0 - T_a) e^{-k t}
[/tex]

Where:
- [tex]T_a[/tex] is the temperature surrounding the object.
- [tex]T_0[/tex] is the initial temperature of the object.
- [tex]t[/tex] is the time in minutes.
- [tex]T[/tex] is the temperature of the object after [tex]t[/tex] minutes.
- [tex]k[/tex] is the decay constant.

The can of soda reaches the temperature of [tex]58^{\circ} F[/tex] after 40 minutes. Using this information, find the value of [tex]k[/tex], to the nearest thousandth. Use the resulting equation to determine the Fahrenheit temperature of the can of soda, to the nearest degree, after 60 minutes.



Answer :

To solve this problem, we need to find the value of the decay constant [tex]\( k \)[/tex] using the given data and then use this value to determine the temperature of the can of soda after a specified time.

Given data:
- Initial temperature of the soda, [tex]\( T_0 = 70^\circ F \)[/tex]
- Temperature of the refrigerator, [tex]\( T_a = 34^\circ F \)[/tex]
- Temperature of the soda after 40 minutes, [tex]\( T = 58^\circ F \)[/tex]
- Time, [tex]\( t = 40 \)[/tex] minutes

We use the formula provided by Newton's Law of Cooling:
[tex]\[ T = T_a + (T_0 - T_a) e^{-k t} \][/tex]

1. Finding the decay constant [tex]\( k \)[/tex]:
- Plug in the known values:
[tex]\[ 58 = 34 + (70 - 34) e^{-k \cdot 40} \][/tex]
- Simplify inside the parenthesis:
[tex]\[ 58 = 34 + 36 e^{-k \cdot 40} \][/tex]
- Subtract 34 from both sides to isolate the exponential term:
[tex]\[ 24 = 36 e^{-k \cdot 40} \][/tex]
- Divide both sides by 36 to further isolate the exponential term:
[tex]\[ \frac{24}{36} = e^{-k \cdot 40} \][/tex]
[tex]\[ \frac{2}{3} = e^{-k \cdot 40} \][/tex]

- Take the natural logarithm of both sides to solve for [tex]\( k \)[/tex]:
[tex]\[ \ln\left(\frac{2}{3}\right) = -k \cdot 40 \][/tex]

- Isolate [tex]\( k \)[/tex] by dividing both sides by [tex]\(-40\)[/tex]:
[tex]\[ k = -\frac{\ln\left(\frac{2}{3}\right)}{40} \][/tex]

- Simplify to find [tex]\( k \)[/tex]:
[tex]\[ k \approx 0.01 \][/tex]

2. Determining the temperature of the can of soda after 60 minutes:

- Using [tex]\( t = 60 \)[/tex] minutes, we use the formula again:
[tex]\[ T = T_a + (T_0 - T_a) e^{-k t} \][/tex]
[tex]\[ T = 34 + (70 - 34) e^{-0.01 \cdot 60} \][/tex]
[tex]\[ T = 34 + 36 e^{-0.6} \][/tex]

- Calculate the exponential term and then the temperature [tex]\( T \)[/tex]:
[tex]\[ e^{-0.6} \approx 0.549 \][/tex]
[tex]\[ T \approx 34 + 36 \cdot 0.549 \][/tex]
[tex]\[ T \approx 34 + 19.764 \][/tex]
[tex]\[ T \approx 53.764 \][/tex]

- Round to the nearest integer:
[tex]\[ T \approx 54^\circ F \][/tex]

Therefore, the value of [tex]\( k \)[/tex] is [tex]\( 0.01 \)[/tex] and the temperature of the can of soda after 60 minutes in the refrigerator is [tex]\( 54^\circ F \)[/tex].