After heating up in a teapot, a cup of hot water is poured at a temperature of [tex]$211^{\circ} F$[/tex]. The cup sits to cool in a room at a temperature of [tex]$73^{\circ} F$[/tex]. Newton's Law of Cooling explains that the temperature of the cup of water will decrease proportionally to the difference between the temperature of the water and the temperature of the room, as given by the formula below:

[tex]
T = T_a + \left(T_0 - T_a\right) e^{-k t}
[/tex]

Where:
- [tex]T_a[/tex] = the temperature surrounding the object
- [tex]T_0[/tex] = the initial temperature of the object
- [tex]t[/tex] = the time in minutes
- [tex]T[/tex] = the temperature of the object after [tex]t[/tex] minutes
- [tex]k[/tex] = decay constant

The cup of water reaches the temperature of [tex][tex]$189^{\circ} F$[/tex][/tex] after 1.5 minutes. Using this information, find the value of [tex]k[/tex], to the nearest thousandth. Use the resulting equation to determine the Fahrenheit temperature of the cup of water, to the nearest degree, after 4 minutes.

Enter only the final temperature into the input box.



Answer :

To solve the problem, we start with the information given:

1. The initial temperature of the water, [tex]\( T_0 \)[/tex], is [tex]\( 211^{\circ} F \)[/tex].
2. The ambient temperature, [tex]\( T_a \)[/tex], is [tex]\( 73^{\circ} F \)[/tex].
3. After 1.5 minutes, the temperature of the water, [tex]\( T \)[/tex], is [tex]\( 189^{\circ} F \)[/tex].

We need to determine the decay constant [tex]\( k \)[/tex] and then use this value to find the water's temperature after 4 minutes.

### Step 1: Determine [tex]\( k \)[/tex]

Using the formula from Newton's Law of Cooling:
[tex]\[ T = T_a + (T_0 - T_a) e^{-k t} \][/tex]

Substitute the known values when [tex]\( t = 1.5 \)[/tex] minutes:
[tex]\[ 189 = 73 + (211 - 73) e^{-1.5k} \][/tex]

Rearrange the equation to solve for [tex]\( k \)[/tex]:
[tex]\[ 189 - 73 = 138 e^{-1.5k} \][/tex]
[tex]\[ 116 = 138 e^{-1.5k} \][/tex]

Divide both sides by 138:
[tex]\[ \frac{116}{138} = e^{-1.5k} \][/tex]

Take the natural logarithm of both sides:
[tex]\[ \ln\left(\frac{116}{138}\right) = -1.5k \][/tex]

Solve for [tex]\( k \)[/tex]:
[tex]\[ k = -\frac{\ln\left(\frac{116}{138}\right)}{1.5} \][/tex]

This calculation gives us [tex]\( k \approx 0.116 \)[/tex] (rounded to the nearest thousandth).

### Step 2: Determine the Temperature after 4 Minutes

Now that we have [tex]\( k \)[/tex], use it to find the temperature after 4 minutes.

### Substitute [tex]\( t = 4 \)[/tex] and [tex]\( k = 0.116 \)[/tex] into the formula:
[tex]\[ T = 73 + (211 - 73) e^{-0.116 \cdot 4} \][/tex]

Simplify the expression inside the exponent and solve:
[tex]\[ T = 73 + 138 e^{-0.464} \][/tex]

Calculate the exponent and complete the formula:
[tex]\[ T \approx 73 + 138 \cdot e^{-0.464} \][/tex]

Using the appropriate value for the exponential term:
[tex]\[ T \approx 73 + 138 \cdot 0.629 \][/tex]
[tex]\[ T \approx 73 + 86.802 \][/tex]
[tex]\[ T \approx 159.802 \][/tex]

Rounding to the nearest degree, the temperature of the water after 4 minutes is:
[tex]\[ 160^{\circ} F \][/tex]

Thus, the final temperature is:
[tex]\[ 160 \][/tex]