Which of the following choices represents the zeroes of the function [tex] y = -2(x - 6k)(x + 2k) [/tex] in terms of the constant [tex] k [/tex]?

1. [tex] x = 6k [/tex] and [tex] x = -2k [/tex]
2. [tex] x = -12k [/tex] and [tex] x = 4k [/tex]
3. [tex] x = -k [/tex] and [tex] x = 3k [/tex]
4. [tex] x = -2k [/tex] and [tex] x = 6k [/tex]



Answer :

To find the zeroes of the function [tex]\( y = -2(x - 6k)(x + 2k) \)[/tex], we need to determine the values of [tex]\( x \)[/tex] that make [tex]\( y \)[/tex] equal to zero. When [tex]\( y = 0 \)[/tex], the equation becomes:

[tex]\[ 0 = -2(x - 6k)(x + 2k) \][/tex]

We can set each factor inside the parentheses to zero and solve for [tex]\( x \)[/tex] separately.

1. Set [tex]\( x - 6k = 0 \)[/tex]:
[tex]\[ x - 6k = 0 \][/tex]
[tex]\[ x = 6k \][/tex]

2. Set [tex]\( x + 2k = 0 \)[/tex]:
[tex]\[ x + 2k = 0 \][/tex]
[tex]\[ x = -2k \][/tex]

Therefore, the zeroes of the function are [tex]\( x = 6k \)[/tex] and [tex]\( x = -2k \)[/tex].

Comparing this with the given choices:

(1) [tex]\( x = -6k \)[/tex] and [tex]\( x = 2k \)[/tex]
(2) [tex]\( x = -12k \)[/tex] and [tex]\( x = 4k \)[/tex]
(3) [tex]\( x = -k \)[/tex] and [tex]\( x = 3k \)[/tex]
(4) [tex]\( x = -2k \)[/tex] and [tex]\( x = 6k \)[/tex]

The correct choice that matches our zeroes [tex]\( x = 6k \)[/tex] and [tex]\( x = -2k \)[/tex] is:

(4) [tex]\( x = -2k \)[/tex] and [tex]\( x = 6k \)[/tex]

So, the correct answer is choice (4).