The formula for the volume of a right circular cylinder is [tex]V=\pi r^2 h[/tex]. If [tex]r=2b[/tex] and [tex]h=5b+3[/tex], what is the volume of the cylinder in terms of [tex]b[/tex]?

A. [tex]10\pi b^2 + 6\pi b[/tex]
B. [tex]20\pi b^3 + 12\pi b^2[/tex]
C. [tex]20\pi^2 b^3 + 12\pi^2 b^2[/tex]
D. [tex]50\pi b^3 + 20\pi b^2 + 90\pi b[/tex]



Answer :

To find the volume of a cylinder given the radius [tex]\( r = 2b \)[/tex] and height [tex]\( h = 5b + 3 \)[/tex], we'll use the formula for the volume of a right circular cylinder:

[tex]\[ V = \pi r^2 h \][/tex]

Step-by-step, we can substitute the given expressions for [tex]\( r \)[/tex] and [tex]\( h \)[/tex] into the formula:

1. Substitute [tex]\( r = 2b \)[/tex]:
[tex]\[ r^2 = (2b)^2 = 4b^2 \][/tex]

2. Substitute [tex]\( r^2 = 4b^2 \)[/tex] and [tex]\( h = 5b + 3 \)[/tex] into the volume formula:
[tex]\[ V = \pi (4b^2) (5b + 3) \][/tex]

3. Distribute [tex]\( 4b^2 \)[/tex] over [tex]\( 5b + 3 \)[/tex]:
[tex]\[ 4b^2 \cdot 5b + 4b^2 \cdot 3 = 20b^3 + 12b^2 \][/tex]

4. Multiply by [tex]\(\pi\)[/tex]:
[tex]\[ V = \pi (20b^3 + 12b^2) \][/tex]

So, the volume of the cylinder in terms of [tex]\( b \)[/tex] is:
[tex]\[ V = 20\pi b^3 + 12\pi b^2 \][/tex]

The correct choice is:
[tex]\[ \boxed{20 \pi b^3 + 12 \pi b^2} \][/tex]