Which equation's graph has a slope of [tex]$\frac{2}{3}$[/tex] and a [tex]$y$[/tex]-intercept of [tex]$(0, -2)$[/tex]?

A. [tex]$2x - 3y = 6$[/tex]
B. [tex]$3x - 2y = 6$[/tex]
C. [tex]$2x + 3y = -2$[/tex]
D. [tex]$3x + 2y = -2$[/tex]



Answer :

To determine which equation's graph has a slope of [tex]\(\frac{2}{3}\)[/tex] and a [tex]\(y\)[/tex]-intercept of [tex]\((0, -2)\)[/tex], we need to convert each of the given equations into the slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] represents the slope and [tex]\(b\)[/tex] represents the [tex]\(y\)[/tex]-intercept.

Let's analyze each equation step by step:

1. Equation A: [tex]\(2x - 3y = 6\)[/tex]

First, solve for [tex]\(y\)[/tex]:
[tex]\[ 2x - 3y = 6 \][/tex]
Subtract [tex]\(2x\)[/tex] from both sides:
[tex]\[ -3y = -2x + 6 \][/tex]
Divide both sides by [tex]\(-3\)[/tex]:
[tex]\[ y = \frac{2}{3}x - 2 \][/tex]
Here, the slope [tex]\(m\)[/tex] is [tex]\(\frac{2}{3}\)[/tex] and the [tex]\(y\)[/tex]-intercept [tex]\(b\)[/tex] is [tex]\(-2\)[/tex]. So, this equation matches the given slope and [tex]\(y\)[/tex]-intercept.

2. Equation B: [tex]\(3x - 2y = 6\)[/tex]

First, solve for [tex]\(y\)[/tex]:
[tex]\[ 3x - 2y = 6 \][/tex]
Subtract [tex]\(3x\)[/tex] from both sides:
[tex]\[ -2y = -3x + 6 \][/tex]
Divide both sides by [tex]\(-2\)[/tex]:
[tex]\[ y = \frac{3}{2}x - 3 \][/tex]
Here, the slope [tex]\(m\)[/tex] is [tex]\(\frac{3}{2}\)[/tex] and the [tex]\(y\)[/tex]-intercept [tex]\(b\)[/tex] is [tex]\(-3\)[/tex]. This does not match the given slope and [tex]\(y\)[/tex]-intercept.

3. Equation C: [tex]\(2x + 3y = -2\)[/tex]

First, solve for [tex]\(y\)[/tex]:
[tex]\[ 2x + 3y = -2 \][/tex]
Subtract [tex]\(2x\)[/tex] from both sides:
[tex]\[ 3y = -2x - 2 \][/tex]
Divide both sides by 3:
[tex]\[ y = -\frac{2}{3}x - \frac{2}{3} \][/tex]
Here, the slope [tex]\(m\)[/tex] is [tex]\(-\frac{2}{3}\)[/tex] and the [tex]\(y\)[/tex]-intercept [tex]\(b\)[/tex] is [tex]\(-\frac{2}{3}\)[/tex]. This does not match the given slope and [tex]\(y\)[/tex]-intercept.

4. Equation D: [tex]\(3x + 2y = -2\)[/tex]

First, solve for [tex]\(y\)[/tex]:
[tex]\[ 3x + 2y = -2 \][/tex]
Subtract [tex]\(3x\)[/tex] from both sides:
[tex]\[ 2y = -3x - 2 \][/tex]
Divide both sides by 2:
[tex]\[ y = -\frac{3}{2}x - 1 \][/tex]
Here, the slope [tex]\(m\)[/tex] is [tex]\(-\frac{3}{2}\)[/tex] and the [tex]\(y\)[/tex]-intercept [tex]\(b\)[/tex] is [tex]\(-1\)[/tex]. This does not match the given slope and [tex]\(y\)[/tex]-intercept.

Only Equation A, [tex]\(2x - 3y = 6\)[/tex], has the required slope of [tex]\(\frac{2}{3}\)[/tex] and a [tex]\(y\)[/tex]-intercept of [tex]\((0, -2)\)[/tex].

Thus, the correct answer is:
[tex]\[ \boxed{1} \][/tex]