Simplify:

[tex]\[
\left(\frac{2 x^2+5 x+2}{x+1}\right)\left(\frac{x^2-1}{x+2}\right)
\][/tex]

A. [tex]\(2 x^2-x-1\)[/tex]
B. [tex]\(2 x^2-x-6\)[/tex]
C. [tex]\(2 x^2+3 x+1\)[/tex]
D. [tex]\(2 x^2-3 x+1\)[/tex]



Answer :

To simplify the expression [tex]\(\left(\frac{2 x^2 + 5 x + 2}{x + 1}\right) \left(\frac{x^2 - 1}{x + 2}\right)\)[/tex], we need to perform the following steps:

1. Factorize the Numerators and Denominators:

- For [tex]\(\frac{2x^2 + 5x + 2}{x + 1}\)[/tex]:
We can factorize [tex]\(2x^2 + 5x + 2\)[/tex] as follows:
[tex]\[ 2x^2 + 5x + 2 = (2x + 1)(x + 2) \][/tex]
So,
[tex]\[ \frac{2x^2 + 5x + 2}{x + 1} = \frac{(2x + 1)(x + 2)}{x + 1} \][/tex]

- For [tex]\(\frac{x^2 - 1}{x + 2}\)[/tex]:
We can factorize [tex]\(x^2 - 1\)[/tex] as follows:
[tex]\[ x^2 - 1 = (x - 1)(x + 1) \][/tex]
So,
[tex]\[ \frac{x^2 - 1}{x + 2} = \frac{(x - 1)(x + 1)}{x + 2} \][/tex]

2. Simplify the Product of the Expressions:

Using the factored forms, we can write:
[tex]\[ \left(\frac{(2x + 1)(x + 2)}{x + 1}\right)\left(\frac{(x - 1)(x + 1)}{x + 2}\right) \][/tex]

Next, we cancel the common terms in the numerator and the denominator:
- The term [tex]\(x + 2\)[/tex] appears in both the numerator and denominator.
- The term [tex]\(x + 1\)[/tex] appears in both the numerator and denominator.

Therefore, the expression simplifies to:
[tex]\[ (2x + 1)(x - 1) \][/tex]

3. Expand the Simplified Expression:

Now, expand [tex]\((2x + 1)(x - 1)\)[/tex]:
[tex]\[ (2x + 1)(x - 1) = 2x(x - 1) + 1(x - 1) \][/tex]
[tex]\[ = 2x^2 - 2x + x - 1 \][/tex]
[tex]\[ = 2x^2 - x - 1 \][/tex]

Therefore, the simplified form of the given expression is:
[tex]\[ 2x^2 - x - 1 \][/tex]

The correct answer is:
[tex]\[ \boxed{2x^2 - x - 1} \][/tex]