Select the correct answer.

What is the [tex]$y$[/tex]-intercept of the graph of [tex]$f(x) = -4x^2 + 3x - 1$[/tex]?

A. [tex]$(0, -2)$[/tex]
B. [tex]$(0, -1)$[/tex]
C. [tex]$(0, 0)$[/tex]
D. [tex]$(0, 1)$[/tex]
E. [tex]$(0, 2)$[/tex]



Answer :

To determine the [tex]\(y\)[/tex]-intercept of the graph of the polynomial function [tex]\( f(x) = -4x^2 + 3x - 1 \)[/tex], one needs to understand that the [tex]\( y \)[/tex]-intercept occurs where the graph crosses the [tex]\( y \)[/tex]-axis. At the [tex]\( y \)[/tex]-intercept, the value of [tex]\( x \)[/tex] is always [tex]\(0\)[/tex].

Given the polynomial function [tex]\( f(x) = -4x^2 + 3x - 1 \)[/tex], we can find the [tex]\( y \)[/tex]-intercept by substituting [tex]\( x \)[/tex] with [tex]\(0\)[/tex]:

[tex]\[ f(0) = -4(0)^2 + 3(0) - 1 \][/tex]

Solving this:

[tex]\[ f(0) = -4 \cdot 0 + 3 \cdot 0 - 1 \][/tex]
[tex]\[ f(0) = 0 + 0 - 1 \][/tex]
[tex]\[ f(0) = -1 \][/tex]

So, the [tex]\( y \)[/tex]-intercept of the graph is [tex]\((0, -1)\)[/tex].

Therefore, the correct answer is:
[tex]\[ (0, -1) \][/tex]