Two angles of a triangle are [tex]32^{\circ}[/tex] and [tex]110^{\circ}[/tex]. What is the measure of the third angle?

A. [tex]218^{\circ}[/tex]
B. [tex]142^{\circ}[/tex]
C. [tex]180^{\circ}[/tex]
D. [tex]38^{\circ}[/tex]



Answer :

To solve for the measure of the third angle in a triangle, we use the fact that the sum of the interior angles of a triangle is always [tex]\(180^{\circ}\)[/tex].

Given:
- The first angle ([tex]\(\angle 1\)[/tex]) is [tex]\(32^{\circ}\)[/tex].
- The second angle ([tex]\(\angle 2\)[/tex]) is [tex]\(110^{\circ}\)[/tex].

We need to find the third angle ([tex]\(\angle 3\)[/tex]).

Here is a step-by-step process to find [tex]\(\angle 3\)[/tex]:

1. Start with the sum of the interior angles of a triangle:
[tex]\[ \angle 1 + \angle 2 + \angle 3 = 180^{\circ} \][/tex]

2. Substitute the given values into the equation:
[tex]\[ 32^{\circ} + 110^{\circ} + \angle 3 = 180^{\circ} \][/tex]

3. Combine the known angles:
[tex]\[ 142^{\circ} + \angle 3 = 180^{\circ} \][/tex]

4. To isolate [tex]\(\angle 3\)[/tex], subtract [tex]\(142^{\circ}\)[/tex] from both sides of the equation:
[tex]\[ \angle 3 = 180^{\circ} - 142^{\circ} \][/tex]

5. Perform the subtraction:
[tex]\[ \angle 3 = 38^{\circ} \][/tex]

Thus, the measure of the third angle is [tex]\(38^{\circ}\)[/tex].

The correct answer is [tex]\( \boxed{38^{\circ}} \)[/tex] (option J).