Answer :

Sure, I'll walk you through the detailed, step-by-step solution for evaluating [tex]\(\tan A + \frac{1}{\sin A \cdot \cos A}\)[/tex].

1. Understand the Problem:
We are asked to evaluate the expression [tex]\(\tan A + \frac{1}{\sin A \cos A}\)[/tex].

2. Separate the Expression:
Let's break down the expression into two parts:
[tex]\[ \tan A + \frac{1}{\sin A \cos A} \][/tex]

3. Evaluate [tex]\(\tan A\)[/tex]:
Recall the trigonometric identity for the tangent of an angle [tex]\(A\)[/tex]:
[tex]\[ \tan A = \frac{\sin A}{\cos A} \][/tex]

4. Evaluate [tex]\(\frac{1}{\sin A \cos A}\)[/tex]:
Notice that [tex]\(\sin A \cos A\)[/tex] can be written using the double-angle identity for sine:
[tex]\[ \sin 2A = 2 \sin A \cos A \implies \sin A \cos A = \frac{\sin 2A}{2} \][/tex]
Thus:
[tex]\[ \frac{1}{\sin A \cos A} = \frac{1}{\frac{\sin 2A}{2}} = \frac{2}{\sin 2A} \][/tex]

5. Add the Two Terms:
Now, we combine the results from steps 3 and 4:
[tex]\[ \tan A + \frac{2}{\sin 2A} \][/tex]

For the given specific values:

6. Specific Angle in Radians (A):
Let's consider [tex]\(A = \frac{\pi}{4}\)[/tex] (which is 45 degrees), based on our problem:

- [tex]\(\tan A = \tan \left(\frac{\pi}{4}\right) = 1\)[/tex]

- For [tex]\(A = \frac{\pi}{4}\)[/tex]:
[tex]\[ \sin A = \sin \left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \][/tex]
[tex]\[ \cos A = \cos \left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \][/tex]

Thus:
[tex]\[ \sin A \cos A = \left(\frac{\sqrt{2}}{2}\right) \left(\frac{\sqrt{2}}{2}\right) = \frac{2}{4} = \frac{1}{2} \][/tex]
Therefore:
[tex]\[ \frac{1}{\sin A \cos A} = \frac{1}{\frac{1}{2}} = 2 \][/tex]

7. Calculate the Final Result:
Now sum the two results:
[tex]\[ \tan A + \frac{1}{\sin A \cos A} = 1 + 2 = 3 \][/tex]

So the detailed, step-by-step evaluated result of the expression is:

[tex]\[ \tan A + \frac{1}{\sin A \cos A} = 3 \][/tex]

Additionally, breaking down the specific values for interest:
- [tex]\(\tan A \approx 0.9999999999999999\)[/tex]
- [tex]\( \frac{1}{\sin A \cos A} = 2.0 \)[/tex]

And summing them:
[tex]\[ 0.9999999999999999 + 2.0 = 3.0 \][/tex]