What is the following product? Assume [tex]$b \geq 0$[/tex].

[tex]\sqrt{b} \cdot \sqrt{b}[/tex]

A. [tex]b \sqrt{b}[/tex]

B. [tex]2 \sqrt{b}[/tex]

C. [tex]b[/tex]

D. [tex]b^2[/tex]



Answer :

To solve the given problem, where we are asked to find the product of [tex]\(\sqrt{b} \cdot \sqrt{b}\)[/tex] with the assumption that [tex]\(b \geq 0\)[/tex], we can proceed as follows:

1. Understand the expression:
- We need to compute the product of two square roots: [tex]\(\sqrt{b} \cdot \sqrt{b}\)[/tex].

2. Apply the property of square roots:
- Recall the property: [tex]\(\sqrt{a} \cdot \sqrt{a} = a\)[/tex].
- This property tells us that the product of two identical square roots results in the number under the square root.

3. Apply this property to our problem:
- Given two identical square roots: [tex]\(\sqrt{b} \cdot \sqrt{b}\)[/tex].
- According to the property mentioned above, [tex]\(\sqrt{b} \cdot \sqrt{b} = b\)[/tex].

4. State the result:
- Therefore, the product [tex]\(\sqrt{b} \cdot \sqrt{b}\)[/tex] simplifies to [tex]\(b\)[/tex].

Now, we can compare this to the given options:

- [tex]\(b \sqrt{b}\)[/tex]
- [tex]\(2 \sqrt{b}\)[/tex]
- [tex]\(b\)[/tex]
- [tex]\(b^2\)[/tex]

Among the given choices, the correct answer is:
[tex]\[ b \][/tex]

Hence, the product [tex]\(\sqrt{b} \cdot \sqrt{b}\)[/tex] is indeed [tex]\(b\)[/tex].