What is the following product?

[tex]\[ \sqrt[3]{5} \cdot \sqrt{2} \][/tex]

A. [tex]\(\sqrt[6]{10}\)[/tex]

B. [tex]\(\sqrt[6]{200}\)[/tex]

C. [tex]\(\sqrt[6]{500}\)[/tex]

D. [tex]\(\sqrt[6]{100000}\)[/tex]



Answer :

Sure, let's evaluate each of the given expressions step-by-step:

1. The first expression is [tex]\(\sqrt{2} \cdot \sqrt[3]{5}\)[/tex]. When we evaluate this, we get the value:
[tex]\[ \sqrt{2} \cdot \sqrt[3]{5} \approx 2.4182711751219577 \][/tex]

2. The second expression is [tex]\(\sqrt[6]{10}\)[/tex]. When we evaluate this, we get the value:
[tex]\[ \sqrt[6]{10} \approx 1.4677992676220695 \][/tex]

3. The third expression is [tex]\(\sqrt[6]{200}\)[/tex]. When we evaluate this, we get the value:
[tex]\[ \sqrt[6]{200} \approx 2.418271175121957 \][/tex]

4. The fourth expression is [tex]\(\sqrt[6]{500}\)[/tex]. When we evaluate this, we get the value:
[tex]\[ \sqrt[6]{500} \approx 2.8172691138478405 \][/tex]

5. The fifth expression is [tex]\(\sqrt[6]{100000}\)[/tex]. When we evaluate this, we get the value:
[tex]\[ \sqrt[6]{100000} \approx 6.812920690579612 \][/tex]

Hence, the complete results for the given expressions are as follows:
[tex]\[ \begin{aligned} &\sqrt{2} \cdot \sqrt[3]{5} &\approx 2.4182711751219577 \\ &\sqrt[6]{10} &\approx 1.4677992676220695 \\ &\sqrt[6]{200} &\approx 2.418271175121957 \\ &\sqrt[6]{500} &\approx 2.8172691138478405 \\ &\sqrt[6]{100000} &\approx 6.812920690579612 \\ \end{aligned} \][/tex]