What is the following product?

[tex]\[ \sqrt[3]{4} \cdot \sqrt{3} \][/tex]

A. [tex]\( 2(\sqrt[6]{9}) \)[/tex]
B. [tex]\( \sqrt[6]{12} \)[/tex]
C. [tex]\( \sqrt[6]{432} \)[/tex]
D. [tex]\( 2(\sqrt[6]{3,888}) \)[/tex]



Answer :

Sure, let's break down the solution step-by-step for each term:

1. First term: [tex]\(\sqrt[3]{4} \cdot \sqrt{3}\)[/tex]

[tex]\(\sqrt[3]{4}\)[/tex] is the cube root of 4.

[tex]\(\sqrt{3}\)[/tex] is the square root of 3.

When we multiply these values, we get approximately [tex]\(2.749459273997205\)[/tex].

2. Second term: [tex]\(2(\sqrt[6]{9})\)[/tex]

[tex]\(\sqrt[6]{9}\)[/tex] is the sixth root of 9.

When we multiply [tex]\(\sqrt[6]{9}\)[/tex] by 2, we get approximately [tex]\(2.8844991406148166\)[/tex].

3. Third term: [tex]\(\sqrt[6]{12}\)[/tex]

[tex]\(\sqrt[6]{12}\)[/tex] is the sixth root of 12.

This value is approximately [tex]\(1.5130857494229015\)[/tex].

4. Fourth term: [tex]\(\sqrt[6]{432}\)[/tex]

[tex]\(\sqrt[6]{432}\)[/tex] is the sixth root of 432.

This value is approximately [tex]\(2.7494592739972052\)[/tex].

5. Fifth term: [tex]\(2(\sqrt[6]{3,888})\)[/tex]

[tex]\(\sqrt[6]{3,888}\)[/tex] is the sixth root of 3,888.

When we multiply [tex]\(\sqrt[6]{3,888}\)[/tex] by 2, we get approximately [tex]\(7.930812913000376\)[/tex].

So, the product of these values is:

[tex]\[ (2.749459273997205) \cdot (2.8844991406148166) \cdot (1.5130857494229015) \cdot (2.7494592739972052) \cdot (7.930812913000376) \][/tex]

You then multiply these values to get the final product of the expression. Each term has been approximated computationally to give you the most accurate result.