Answer :

To determine the restrictions on the domain of the composite function [tex]\( g \circ h \)[/tex], we need to analyze the functions [tex]\( g(x) \)[/tex] and [tex]\( h(x) \)[/tex] given in the problem. The composite function [tex]\( g \circ h \)[/tex] means [tex]\( g(h(x)) \)[/tex]. Let’s go through this step-by-step:

1. Identify the given functions:
- [tex]\( g(x) = \sqrt{x - 4} \)[/tex]
- [tex]\( h(x) = 2x - 8 \)[/tex]

2. Form the composite function [tex]\( g \circ h \)[/tex]:
To form [tex]\( g \circ h \)[/tex], we substitute [tex]\( h(x) \)[/tex] into [tex]\( g(x) \)[/tex]:
[tex]\[ g(h(x)) = g(2x - 8) \][/tex]
Now, replace [tex]\( x \)[/tex] in [tex]\( g(x) \)[/tex] with [tex]\( 2x - 8 \)[/tex]:
[tex]\[ g(2x - 8) = \sqrt{(2x - 8) - 4} \][/tex]
Simplify inside the square root:
[tex]\[ g(2x - 8) = \sqrt{2x - 12} \][/tex]

3. Determine the domain restrictions for [tex]\( g(2x - 8) = \sqrt{2x - 12} \)[/tex]:
The expression inside the square root must be non-negative for the square root to be defined. Hence, we set up the inequality:
[tex]\[ 2x - 12 \geq 0 \][/tex]
Solve for [tex]\( x \)[/tex]:
- Add 12 to both sides:
[tex]\[ 2x \geq 12 \][/tex]
- Divide both sides by 2:
[tex]\[ x \geq 6 \][/tex]

4. Conclusion:
For [tex]\( g \circ h \)[/tex] to be defined, the input [tex]\( x \)[/tex] must satisfy [tex]\( x \geq 6 \)[/tex].

Therefore, the restriction on the domain of [tex]\( g \circ h \)[/tex] is [tex]\( x \geq 6 \)[/tex].