Given: [tex]g(x)=\sqrt{x-4}[/tex] and [tex]h(x)=2x-8[/tex]

What is [tex]g(h(10))[/tex]?

A. [tex]2\sqrt{2}[/tex]
B. [tex]\sqrt{6}[/tex]
C. [tex]\sqrt{6}-8[/tex]
D. [tex]2\sqrt{6}-8[/tex]



Answer :

To solve the problem, let's break it down step by step.

First, we need to understand the composition of the two functions [tex]\( g(x) \)[/tex] and [tex]\( h(x) \)[/tex].

Given:
[tex]\[ g(x) = \sqrt{x - 4} \][/tex]
[tex]\[ h(x) = 2x - 8 \][/tex]

We want to find [tex]\( g(h(10)) \)[/tex].

Step 1: Calculate [tex]\( h(10) \)[/tex]

Substitute [tex]\( x = 10 \)[/tex] into the function [tex]\( h(x) \)[/tex]:
[tex]\[ h(10) = 2(10) - 8 \][/tex]
[tex]\[ h(10) = 20 - 8 \][/tex]
[tex]\[ h(10) = 12 \][/tex]

Step 2: Calculate [tex]\( g(h(10)) \)[/tex]

Now substitute [tex]\( h(10) = 12 \)[/tex] into the function [tex]\( g(x) \)[/tex]:
[tex]\[ g(12) = \sqrt{12 - 4} \][/tex]
[tex]\[ g(12) = \sqrt{8} \][/tex]

Simplifying [tex]\( \sqrt{8} \)[/tex]:
[tex]\[ \sqrt{8} = \sqrt{4 \cdot 2} \][/tex]
[tex]\[ \sqrt{8} = \sqrt{4} \cdot \sqrt{2} \][/tex]
[tex]\[ \sqrt{8} = 2\sqrt{2} \][/tex]

Therefore,
[tex]\[ g(h(10)) = 2\sqrt{2} \][/tex]

Given the options:
- [tex]\( 2\sqrt{2} \)[/tex]
- [tex]\( \sqrt{6} \)[/tex]
- [tex]\( \sqrt{6} - 8 \)[/tex]
- [tex]\( 2\sqrt{6} - 8 \)[/tex]

The correct answer is:
[tex]\[ 2\sqrt{2} \][/tex]