Answer :
Certainly! To find the area of the circular oil spill at any given time [tex]\( t \)[/tex], we need to create a composite function. This composite function will combine the radius of the oil spill as a function of time with the area of the circular region as a function of the radius.
Let's break it down step-by-step.
### Step 1: Radius as a Function of Time
Given the radius of the oil spill in miles as a function of time [tex]\( t \)[/tex] in hours:
[tex]\[ r(t) = 0.5 + 2t \][/tex]
### Step 2: Area as a Function of Radius
Given the area of the circular region in square miles as a function of the radius [tex]\( r \)[/tex] in miles:
[tex]\[ A(r) = \pi r^2 \][/tex]
### Step 3: Composite Function for the Area as a Function of Time
To find the area of the oil spill at time [tex]\( t \)[/tex], we need to substitute the radius function [tex]\( r(t) \)[/tex] into the area function [tex]\( A(r) \)[/tex]. This will give us a composite function [tex]\( A(r(t)) \)[/tex] representing the area as a function of time.
1. Substitute the radius function into the area function:
[tex]\[ r(t) = 0.5 + 2t \][/tex]
[tex]\[ A(r) = \pi r^2 \][/tex]
2. Express [tex]\( A \)[/tex] in terms of [tex]\( t \)[/tex]:
[tex]\[ A(r(t)) = A(0.5 + 2t) \][/tex]
3. Compute the area function:
Since [tex]\( A(r) = \pi r^2 \)[/tex], we replace [tex]\( r \)[/tex] with [tex]\( 0.5 + 2t \)[/tex]:
[tex]\[ A(0.5 + 2t) = \pi (0.5 + 2t)^2 \][/tex]
4. Simplify the expression:
[tex]\[ (0.5 + 2t)^2 = (0.5 + 2t)(0.5 + 2t) \][/tex]
Using the distributive property:
[tex]\[ (0.5 + 2t)^2 = 0.5^2 + 2 \cdot 0.5 \cdot 2t + (2t)^2 \][/tex]
[tex]\[ = 0.25 + 2t + 4t^2 \][/tex]
Now multiply by [tex]\( \pi \)[/tex] to get the area:
[tex]\[ A(0.5 + 2t) = \pi (0.25 + 2t + 4t^2) \][/tex]
Therefore:
[tex]\[ A(t) = \pi (0.25 + 2t + 4t^2) \][/tex]
### Conclusion
The composite function that gives the area of the circular oil spill at time [tex]\( t \)[/tex] is:
[tex]\[ A(t) = \pi (0.25 + 2t + 4t^2) \][/tex]
This function allows us to find the area of the oil spill at any given time [tex]\( t \)[/tex].
Let's break it down step-by-step.
### Step 1: Radius as a Function of Time
Given the radius of the oil spill in miles as a function of time [tex]\( t \)[/tex] in hours:
[tex]\[ r(t) = 0.5 + 2t \][/tex]
### Step 2: Area as a Function of Radius
Given the area of the circular region in square miles as a function of the radius [tex]\( r \)[/tex] in miles:
[tex]\[ A(r) = \pi r^2 \][/tex]
### Step 3: Composite Function for the Area as a Function of Time
To find the area of the oil spill at time [tex]\( t \)[/tex], we need to substitute the radius function [tex]\( r(t) \)[/tex] into the area function [tex]\( A(r) \)[/tex]. This will give us a composite function [tex]\( A(r(t)) \)[/tex] representing the area as a function of time.
1. Substitute the radius function into the area function:
[tex]\[ r(t) = 0.5 + 2t \][/tex]
[tex]\[ A(r) = \pi r^2 \][/tex]
2. Express [tex]\( A \)[/tex] in terms of [tex]\( t \)[/tex]:
[tex]\[ A(r(t)) = A(0.5 + 2t) \][/tex]
3. Compute the area function:
Since [tex]\( A(r) = \pi r^2 \)[/tex], we replace [tex]\( r \)[/tex] with [tex]\( 0.5 + 2t \)[/tex]:
[tex]\[ A(0.5 + 2t) = \pi (0.5 + 2t)^2 \][/tex]
4. Simplify the expression:
[tex]\[ (0.5 + 2t)^2 = (0.5 + 2t)(0.5 + 2t) \][/tex]
Using the distributive property:
[tex]\[ (0.5 + 2t)^2 = 0.5^2 + 2 \cdot 0.5 \cdot 2t + (2t)^2 \][/tex]
[tex]\[ = 0.25 + 2t + 4t^2 \][/tex]
Now multiply by [tex]\( \pi \)[/tex] to get the area:
[tex]\[ A(0.5 + 2t) = \pi (0.25 + 2t + 4t^2) \][/tex]
Therefore:
[tex]\[ A(t) = \pi (0.25 + 2t + 4t^2) \][/tex]
### Conclusion
The composite function that gives the area of the circular oil spill at time [tex]\( t \)[/tex] is:
[tex]\[ A(t) = \pi (0.25 + 2t + 4t^2) \][/tex]
This function allows us to find the area of the oil spill at any given time [tex]\( t \)[/tex].